
User Guide

User Guide: Open Build Service

Publication Date: 25 Mar 2025

https://documentation.suse.com

Copyright © 2006– 2025 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-

mentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright

notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation

License”.

https://documentation.suse.com

For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third-party trademarks are the prop-

erty of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates.

Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not

guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable

for possible errors or the consequences thereof.

http://www.suse.com/company/legal/

Contents

About this Guide xv
1 Available Documentation xv

2 Feedback xv

3 Documentation Conventions xvi

4 Contributing to the Documentation xvii

I FIRST STEPS 1

1 Beginnerʼs Guide 2
1.1 Target Audience 2

1.2 Conceptual Overview 2

Build Recipe 3 • Build Hosts and Packages 3 • Projects and

Packages 4

1.3 Requirements for Working with the osc Command-Line Tool 5

1.4 Covered Scenarios 6

1.5 Configuring Your System for OBS 7

1.6 Setting Up Your Home Project for the First Time 8

1.7 Creating a New Package Within Your Home Project 9

1.8 Patching Source Code 13

1.9 Branching a Package 15

1.10 Installing Packages from OBS 18

1.11 Other Useful osc Commands 19

iv User Guide

II CONCEPTS 21

2 Supported Build Recipes and Package Formats 22
2.1 About Formats 22

2.2 RPM: Spec 23

2.3 Debian: Dsc 23

2.4 Arch: pkg 24

2.5 KIWI Appliance 24

2.6 SimpleImage 25

2.7 AppImage 25

2.8 Flatpak 25

2.9 mkosi 28

III SETUP 30

3 osc, the Command Line Tool 31
3.1 Installing and Configuring 31

3.2 Configuring osc 31

3.3 Usage 33

Getting Help 33 • Using osc for the First Time 33 • Overview of Brief

Examples 33

4 Build Configuration 37

4.1 About the Build Configuration 37

4.2 Configuration File Syntax 38

4.3 Building with ccache or sccache 48

4.4 Macro Definitions in the Build Configuration 49

Macros for the Build Configuration Only 50 • Macros Used in Spec Files

Only 50

v User Guide

IV USAGE 52

5 Basic OBS Workflow 53
5.1 Setting Up Your Home Project 53

5.2 Creating a New Package 54

5.3 Investigating the Local Build Process 57

Build Log 57 • Local Build Root Directory 58

5.4 Dependency Handling in Your Projects 59

Associating Other Repositories with Your Repository 59 • Reusing Packages

in Your Project 60

5.5 Manage Group 62

6 Local Building 63

6.1 Generic Local Build Options 63

6.2 Advanced Local Build Environment Handling 65

7 Using Source Services 66

7.1 About Source Services 66

7.2 Modes of Source Services 67

7.3 Defining Source Services for Validation 69

7.4 Creating Source Service Definitions 70

7.5 Removing a Source Service 70

7.6 Trigger a service run via a webhook 70

Creating a webhook on GitLab 71 • Creating a webhook on GitHub 71

8 SCM/CI Workflow Integration 72

8.1 SCM/CI Workflow Integration Setup 72

Introduction 72 • Prerequisites 72 • Supported SCMs 72 • Token

Authentication 72 • Webhooks 74 • OBS Workflows 78 • Status

Reporting 90 • Workflow Runs 91 • Errors 93 • Equivalence

Table 94

vi User Guide

8.2 SCM/CI Workflow Steps Reference Table 94

8.3 SCM/CI Workflow Versions 100

Workflow Version Table 100

8.4 SCM/CI Workflow Integration Use-Cases 100

OBS SCM Service 100 • Test Build a Package For Every Pull Request on

GitHub 101 • Rebuild a Package for Every Change in a Branch 103 • Set

Flags on a Package to Disable Builds for an Architecture 104 • Create Package

on OBS for Every Software Release With Git Tags 104 • Using a Custom

Configuration File URL in Combination with Placeholder Variables 107

9 Staging Workflow 108

9.1 Working with Staging Projects 108

Overview of All Staging Projects 108 • Overview of a Single Staging

Project 109 • Copy a Staging Project 110

9.2 Working with Requests 110

Assign Requests into a Staging Project 110 • Remove Requests from a Staging

Project 110 • List Requests of a Staging Project 111 • Exclude Requests

for a Staging Workflow 111 • Bring Back Excluded Requests from a Staging

Workflow 111 • Accept Staging Project 111

10 Notifications 113

10.1 Notifications Configuration 113

10.2 Where Can We Find the Notifications? 114

10.3 Notifications Content 115

10.4 Mark Notification as Read or Unread 116

10.5 Notifications Filters 117

10.6 API 119

11 Moderation 121

11.1 Code of Conduct 121

vii User Guide

11.2 Reporting Problematic Content 122

Who Can Report? 122 • What Can Be Reported? 122 • How To

Report? 123

11.3 Acting as a Moderator 124

Who Is a Moderator? 125 • How Do Moderators Know About the

Reports? 125 • How To Moderate? 125

11.4 Reverting Moderator's Actions 127

11.5 User Appeal 127

11.6 Canned Responses For Moderators 128

V BEST PRACTICES 129

12 Using the OBS Web UI 130
12.1 Homepage and Login 130

12.2 Home Project 132

The Project Page 132 • Changing a project's title and

description 133 • Creating Subprojects to a Project 134

12.3 My Projects, Server Status 134

12.4 Create a link to a package in your home 136

Add Link to Existing Package 136 • Package Page, Build Log and Project

Monitor Page 138

12.5 Repository Output: Built Packages 140

12.6 Managing Repositories 141

Adding a repository 141 • Add Download on Demand repositories

to a project 142 • Adding DoD Repository Sources to a

Repository 144 • Editing DoD Repository Sources 147 • Editing DoD

Repository Sources 149

12.7 Image Templates 149

Creating Own Image Templates 150 • Publishing Image Templates on the

Official Image Templates Page 154

viii User Guide

12.8 KIWI Editor 154

Accessing the KIWI Editor 154 • Adding Repositories in the KIWI

Editor 158 • Adding Packages in the KIWI Editor 160

12.9 Manage Group 161

12.10 Staging Workflow 162

Creating a Staging Workflow 166 • Start Using Staging

Workflow 167 • Delete a Staging Workflow 169 • Configure a Staging

Workflow 170 • Staging Project 173 • Working with Requests in Staging

Workflow 175

13 Basic Concepts and Work Styles 177

13.1 Setup a project reusing other projects sources 177

13.2 Contributing to External Projects Directly 177

13.3 Contributing to Foreign Projects Indirectly 177

14 How to integrate external SCM sources 178

14.1 How to create a source service 178

Follow upstream branches 178 • Fixed versions 179 • Avoid tar

balls 179

15 Publishing Upstream Binaries 181

15.1 Which Instance to Use? 181

Private OBS Instance 181 • openSUSE Build Service 181

15.2 Where to Place Your Project 181

Base Project 182 • Supporting Additional Versions 182

15.3 Creating a Package 183

15.4 Getting Binaries 183

Examples 185

16 Bootstrapping 187

16.1 The Issue 187

ix User Guide

16.2 A Cheat Sheet 187

Creating Your First Project 187 • Importing Your Base Linux Project 187

16.3 Creating a First Project 190

17 osc Example Commands 191

17.1 Package Tracking 191

18 Advanced Project Setups 192

18.1 Rebuilding an Entire Project with Changes 192

18.2 Integrating Source Handling 192

18.3 Using OBS for Automated QA 192

19 Building Kernel Modules 193

20 Common Questions and Solutions 194

20.1 Working with Limited Bandwidth 194

Using the Web Interface 194 • Using osc with Size Limit 194 • Using

download_url 194 • Using Source Services in trylocal Mode 195

VI REFERENCE 196

21 OBS Architecture 197
21.1 Overview Graph 197

21.2 Communication Flow 199

22 OBS Concepts 202

22.1 Project Organization 202

Project Metadata 202 • Project Build Configuration 203 • Project Build

Macro Configuration 204 • An OBS Package 204

22.2 The OBS Interconnect 204

x User Guide

22.3 Download on Demand Repositories (DoD) 205

Motivation 205 • XML Document Hierarchy 205 • The

Daemon 205 • The download Element 206 • The master

Subelement 206 • The pubkey Subelement 206 • Repository Types 207

22.4 Integrating External Source Repositories 210

Motivation 210 • Creating an Reference to an External SCM 210 • Working

with Local Checkouts 211 • Managing Build Recipes in a SCM 211

23 Build Process 212

23.1 Phases of a Build Process 212

Preinstall Phase 212 • Install Phase 212 • Package Build 213 • After

the Build 213

23.2 Identify a build 213

Read DISTURL from an RPM 214 • Read DISTURL from a container 214

24 Build Containers 215

24.1 Supported Container Formats 215

24.2 Container Registry 216

24.3 Container Image Signatures 217

25 Source Management 219

25.1 Find Package Sources 219

25.2 Generating SLSA Provenance Data 219

25.3 Generating SBOM (Software Bill Of Material) Data 220

26 SCM Bridge 221

26.1 SCM Bridge 221

Introduction 221 • Setup a package using the scm bridge 221 • Setup

an entire project using the SCM bridge 222 • Implementation and

Limitations 222 • SCM Source Updates 224

xi User Guide

27 Supported Formats 225

27.1 Spec File Specials (RPM) 225

27.2 OBS Extensions for (KIWI) Appliance Builds 226

27.3 OBS Extensions for Dockerfile based builds 227

28 Request and Review System 229

28.1 What a request looks like 229

Action Types 230 • Request states 231 • Reviewers 232 • Request

creation 233 • Request operations 233

28.2 Who can accept a request 233

29 Image Templates 234

29.1 Structure of Image Templates 234

29.2 Adding Image Templates to/Removing Image Templates from the Official
Image Template Page 234

29.3 Receiving Image Templates via Interconnect 234

30 Multiple Build Description File Handling 236

30.1 Overview 236

30.2 How Multibuild is Defined 236

31 Maintenance Support 238

31.1 Simple Project Setup 238

31.2 Project setup for the Maintenance Process 239

31.3 Using the Maintenance Process 240

Workflow A: A Maintainer Builds an Entire Update Incident for

Submission 240 • Workflow B: Submitting a Package Without

Branching 241 • Workflow C: Process Gets Initiated By the Maintenance

Team 242 • Maintenance Incident Processing 242 • Incident Gets

Released 243 • Incident Gets Reopened and Re-Released 243 • Using

Custom Update IDs 244

xii User Guide

31.4 OBS Internal Mechanisms 244

Maintenance Incident Workflow 244 • Searching for Incidents 246

31.5 Setting Up Projects for a Maintenance Cycle 247

Defining a Maintenance Space 247 • Maintained Project Setups 247

31.6 Optional Channel Setup 247

Defining a Channel 247 • Using Channels in Maintenance Workflow 248

32 Binary Package Tracking 249

32.1 Which Binaries Are Tracked? 249

32.2 What Data Is Tracked? 249

Binary Identifier 249 • Binary Information 250 • Product

information 250

32.3 API Search Interface 251

33 Scheduling and Dispatching 252

33.1 Definition of a Build Process 252

33.2 Scheduling Strategies 252

Build Trigger Setting 253 • Block Mode 253 • Follow Project Links 254

33.3 Release Number Handling 254

Build Counter Syncing via Architectures 255 • Build Counter Syncing via

multiple packages 255

34 Build Constraints 256

34.1 Build Resource Usage and Statistics 256

Displaying the build statistics 256

34.2 Constraint Qualifiers 257

34.3 Constraint scope and precedence 257

Project-scoped constraints 258 • Package-scoped constraints 258 • Build

recipe-scoped constraints 259

34.4 Constraint syntax 260

hostlabel 260 • sandbox 261 • linux 261 • hardware 263

xiii User Guide

34.5 Constraint Handling 267

At least one compliant worker is available 267 • More than half of existing

workers satisfy the constraints 268 • Less than half of existing workers satisfy

the constraints 268 • No existing workers satisfy the constraints 268

34.6 Checking Constraints with osc 268

35 Building Preinstall Images 270

36 Authorization 271

36.1 OBS Authorization Methods 271

Default Mode 271 • Proxy Mode 271 • LDAP Mode 271

36.2 OBS Token Authorization 271

Managing User Tokens 272 • Executing an Action 272

37 Quality Assurance(QA) Hooks 274

37.1 Source Related Checks 274

37.2 Build Time Checks 274

In-Package Checks 274 • Post Build Checks 275 • Post Build Root

Checks 275 • KIWI Specific Post Build Root Checks 275

37.3 Workflow Checks 275

Automated Test Cases 275

Glossary 277

A GNU Licenses 288

xiv User Guide

About this Guide

This guide is part of the Open Build Service documentation. These books are considered to
contain only reviewed content, establishing the reference documentation of OBS.

This guide does not focus on a specific OBS version. It is also not a replacement of the docu-
mentation inside of the openSUSE Wiki (https://en.opensuse.org/Portal:Build_Service) . However,
content from the wiki may be included in these books in a consolidated form.

1 Available Documentation
The following documentation is available for OBS:

Book “Administrator Guide”

This guide offers information about the initial setup and maintenance for running Open
Build Service instances.

Book “User Guide”

This guide is intended for users of Open Build Service. The rst part describes basic work-
flows for working with packages on Open Build Service. This includes checking out a pack-
age from an upstream project, creating patches, branching a repository, and more. The
following parts go into more detail and contain information on backgrounds, setting up
your computer for working with OBS, and usage scenarios. The Best Practices part offers
step-by-step instructions for the most common features of the Open Build Service and the
openSUSE Build Service. The last part covers ideas and motivations, concepts and process-
es of the Open Build Service.

2 Feedback
Several feedback channels are available:

Bugs and Enhancement Requests

Help for openSUSE is provided by the community. Refer to https://en.opensuse.org/Por-

tal:Support for more information.

Bug Reports

To report bugs for Open Build Service, go to https://bugzilla.opensuse.org/ , log in, and
click New.

xv Available Documentation

https://en.opensuse.org/Portal:Build_Service
https://en.opensuse.org/Portal:Support
https://en.opensuse.org/Portal:Support
https://bugzilla.opensuse.org/

Mail

For feedback on the documentation of this product, you can also send a mail to doc-
team@suse.com. Make sure to include the document title, the product version and the
publication date of the documentation. To report errors or suggest enhancements, provide
a concise description of the problem and refer to the respective section number and page
(or URL).

3 Documentation Conventions
The following notices and typographical conventions are used in this documentation:

/etc/passwd: directory names and le names

PLACEHOLDER: replace PLACEHOLDER with the actual value

PATH: the environment variable PATH

ls, --help: commands, options, and parameters

user: users or groups

package name : name of a package

Alt , Alt – F1 : a key to press or a key combination; keys are shown in uppercase as on
a keyboard

File, File Save As: menu items, buttons

Dancing Penguins (Chapter Penguins, ↑Another Manual): This is a reference to a chapter in
another manual.

Commands that must be run with root privileges. Often you can also prefix these com-
mands with the sudo command to run them as non-privileged user.

root # command
geeko > sudo command

Commands that can be run by non-privileged users.

geeko > command

Notices

xvi Documentation Conventions

Warning: Warning Notice
Vital information you must be aware of before proceeding. Warns you about security
issues, potential loss of data, damage to hardware, or physical hazards.

Important: Important Notice
Important information you should be aware of before proceeding.

Note: Note Notice
Additional information, for example about differences in software versions.

Tip: Tip Notice
Helpful information, like a guideline or a piece of practical advice.

4 Contributing to the Documentation
The OBS documentation is written by the community. And you can help too!

Especially as an advanced user or an administrator of OBS, there will be many topics where
you can pitch in even if your English is not the most polished. Conversely, if you are not very
experienced with OBS but your English is good: We rely on community editors to improve the
language.

This guide is written in DocBook XML which can be converted to HTML or PDF documentation.

To clone the source of this guide, use Git:

git clone https://github.com/openSUSE/obs-docu.git

To learn how to validate and generate the OBS documentation, see the le README.

To submit changes, use GitHub pull requests:

1. Fork your own copy of the repository.

2. Commit your changes into the forked repository.

xvii Contributing to the Documentation

3. Create a pull request. This can be done at https://github.com/openSUSE/obs-docu .

It is even possible to host instance-specific content in the official Git repository, but it needs to
be tagged correctly. For example, parts of this documentation are tagged as <para os="open-
suse">. In this case, the paragraph will only become visible when creating the openSUSE ver-
sion of a guide.

xviii Contributing to the Documentation

https://github.com/openSUSE/obs-docu

I First Steps

1 Beginnerʼs Guide 2

1 Beginnerʼs Guide

Copyright © 2006– 2025 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the
Invariant Section being this copyright notice and license. A copy of the license version 1.2 is
included in the section entitled “GNU Free Documentation License”.

For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third-party trade-
marks are the property of their respective owners. Trademark symbols (®, ™ etc.) denote
trademarks of SUSE and its affiliates. Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. How-
ever, this does not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors
nor the translators shall be held liable for possible errors or the consequences thereof.

This guide describes basic workflows for working with packages on Open Build Ser-
vice. This includes checking out an upstream package from a public source code
repository, creating patches, branching a repository, and more.

1.1 Target Audience

This document is intended for users and developers interested in building packages from source
code for different platforms and Linux distributions. Basic knowledge of Linux and the command
line usage is recommended.

1.2 Conceptual Overview

Created in 2005, the Open Build Service (OBS) is a generic system for building and distributing
packages or images from source code in an automatic, consistent, and reproducible way. OBS
can create images and installable packages for a wide range of operating systems (SUSE, Debian,
Ubuntu, Red Hat, Windows, etc.) and hardware architectures (x86, AMD64, z Systems, POWER
etc.).

2 Target Audience

http://www.suse.com/company/legal/

1.2.1 Build Recipe

To create a package in OBS, you need a build recipe which contains the following information:

Metadata. The package name and the description are mandatory. Other data such as the
version, the license, the upstream URL is optional.

Dependencies. Packages depend on other packages to function properly. These relation-
ships are referred to as "dependencies". There are two types of dependencies: build depen-
dencies and runtime dependencies. Build dependencies are packages that must be present
at build time in order to successfully build your source package. The act of building your
source package will create one or more binary packages. Each binary package can specify
some number of runtime dependencies (packages that your software needs to be present
at runtime), and the package manager will try to install these together with your package.
Both types of dependencies - build and runtime - are specified in the build recipe. Exactly
how this is done is described in the documentation of the build system (RPM, Debian, etc.)
in question and is beyond the scope of this Open Build Service documentation. You need
to look up documentation of the individual package managers like https://rpm.org/ or
https://www.debian.org/doc/devel-manuals#packaging-tutorial

A Package List. To successfully install and remove a package and all its contents, the
package manager needs to know which les and directories belong to which package.

For RPM-based operating systems such as openSUSE, SUSE Linux Enterprise, or Red Hat Enter-
prise Linux, all the information above is included in a le with the le extension .spec.

1.2.2 Build Hosts and Packages

The OBS server provides a Web interface and an API. The API is used by the osc command-line
tool.

To build the package, the back end creates a sandbox with the respective distribution. This
sandbox is isolated from the rest of the host system. Depending on the build recipe (on RPM-
based systems, this is a spec le), other packages are downloaded and installed prior to building.

The build process executes all the instructions that it nds in the build recipe. If the build is
successful, the les which belong to the package are installed into the sandbox. From those
sandboxed les, the final RPM package is created and moved into a download area, the download
repository.

3 Build Recipe

https://rpm.org/
https://www.debian.org/doc/devel-manuals#packaging-tutorial

End users can install the package using their preferred package management tools. On a SUSE-
based system, you can use YaST or Zypper command-line tool to install an RPM version of the
package.

Other OBS-related services (like the notification server, mirror interface, etc.) perform very
specific tasks and therefore beyond the scope of this guide.

The schematic in Figure 1.1, “Conceptual Overview of Open Build Service” shows the components in
context.

Web UI
Command

Line
Client

Installer
(YaST,etc.)

OBS API (api.opensuse.org)

User controller, Database, Search, ...

Storage

Build
Host

Your Client

Mirror
Interface

Backend

Hermes
Web UI

Notification
Server

Build
Host

Build
Host

Build
Host

Build
Host

Build
Host

Build
Host

FIGURE 1.1: CONCEPTUAL OVERVIEW OF OPEN BUILD SERVICE

1.2.3 Projects and Packages

In OBS, packages are organized in projects. A single project can contain several packages, and
it usually serves a specific organizational purpose. Generic access control, related repositories,
and build targets (operating systems and architectures) are all defined on the project level.

Projects can also have other projects (subprojects) to structure work. They are mostly isolated
from their parent project and can be configured individually.

Each project name is separated by colon. For example, in the openSUSE Build Service, packages
for fonts are collected in the project M17N:fonts which is a subproject of M17N. Packages for the
Python programming language are available in the devel:languages:python project which is
a subproject of devel:languages which itself is a subproject of devel.

4 Projects and Packages

As a user, you will normally build packages in your home project, available in OBS as home:USER-
NAME. Home projects serve as a personal working area in OBS to define build targets, upload,
build, and download packages. Users are also permitted to create subprojects for temporary
subprojects to work on other people's packages.

Sometimes, you will see the obs://DOMAIN/PROJECT notation. The obs:// schema is a short-
hand to abbreviate the long URL and needs to be replaced by the real OBS instance URL.

1.3 Requirements for Working with the osc
Command-Line Tool

Before you start working with Open Build Service, make sure that the following requirements
are met.

Software Requirements

Install the osc command line tool from your preferred distributions or from the OBS project
openSUSE:Tools:

For SUSE related systems, install the osc package with the zypper command (replace
DISTRIBUTION with your distribution):

root # zypper ar https://download.opensuse.org/repositories/openSUSE:/
Tools/DISTRIBUTION/openSUSE:Tools.repo
root # zypper install osc

For other systems, use your preferred package manager.

As an alternative, you can use the AppImage le . An AppImage le is a packaged
application which can run on many distributions. Download the le from https://

download.opensuse.org/repositories/openSUSE:/Tools/AppImage/ , save it in your ~/
bin directory, and make the le executable.

Hardware Requirements

Make sure you have a minimum of 1 GB of free disk space. The osc command builds
all packages locally under /var/tmp/oscbuild and caches downloaded packages under /
var/tmp/osbuild-packagecache.

5 Requirements for Working with the osc Command-Line Tool

https://download.opensuse.org/repositories/openSUSE:/Tools/AppImage/
https://download.opensuse.org/repositories/openSUSE:/Tools/AppImage/

1.4 Covered Scenarios
This guide is based on the following assumptions.

Since Git is used throughout this guide, and many OBS concepts are modeled after their
Subversion (SVN) equivalents, you have a working knowledge of version control systems
such as Git and Subversion (SVN).

You are using the openSUSE Build Service at https://build.opensuse.org . If you are using
another OBS instance, some commands may differ.

You have an account on an Open Build Service instance.

You are running an RPM-based operating system like openSUSE or SUSE Linux Enterprise.

You are using a customized system as shown in Section 1.5, “Configuring Your System for OBS”.

All examples use the following elements.

A user on a local machine (you) called geeko. This user builds packages on their own
machine.

An OBS user called obsgeeko with home home:obsgeeko on the Open Build Service. This
user is the same as the system user geeko, that is, you.

An OBS user obstux and their home home:obstux on Open Build Service. This user acts
as a collaborator.

An example upstream open source repository at https://github.com/obs-example/my-first-

obs-package . This repository contains source code in the C++ programming language.

This guide describes the following common tasks:

Section 1.6, “Setting Up Your Home Project for the First Time”

Setting up a home project using the OBS Web UI.

Section 1.7, “Creating a New Package Within Your Home Project”

Creating packages from a repository hosted on GitHub.

Section 1.8, “Patching Source Code”

Patching source code without touching the original source.

Section 1.9, “Branching a Package”

Branching a project, making changes, and submitting back the changes to the original
project.

6 Covered Scenarios

https://build.opensuse.org
https://github.com/obs-example/my-first-obs-package
https://github.com/obs-example/my-first-obs-package

Section 1.10, “Installing Packages from OBS”

Integrating the download repository into your system and installing your built package.

1.5 Configuring Your System for OBS
While it is possible to use the osc tool without any configuration, it is recommended to set up
your system as described below.

After all dependencies are downloaded and before the actual build process can start, you need
to enter the root password. This can be inconvenient when you rebuild packages frequently.
The configuration below modifies the sudo configuration to allow building packages without
entering the root password. To maximize security, only specific users can have root privileges.

Follow the steps below to customize sudo.

PROCEDURE 1.1: CONFIGURING sudo

To allow all users in the osc group to build packages without entering the root password,
do as follows.

1. Log in as root and create a new group osc. This group will contain all users which are
allowed to build packages:

root # groupadd osc

2. Add users to your newly created group osc which are allowed to build packages:

root # usermod -a -G osc geeko

Repeat this step to add other users, if necessary.

3. Run visudo to create the sudoers le /etc/sudoers.d/osc:

root # visudo -f /etc/sudoers.d/osc

4. Add the following lines to create a command alias that can be executed only by the osc
group:

sudoers file "/etc/sudoers.d/osc" for the osc group
Cmnd_Alias OSC_CMD = /usr/bin/osc, /usr/bin/build
%osc ALL = (ALL) NOPASSWD:OSC_CMD

5. Log out of your system and log in again to apply the changes.

7 Configuring Your System for OBS

6. Create a new OBS configuration le:

geeko > osc ls home:obsgeeko

If you run the command for the rst time, you will be prompted to enter your OBS user
name and OBS password.

Note: Alternative Directory Structure
If you prefer to separate projects and subprojects in directories and subdirectories, change
the following line in your configuration le ~/.oscrc:

checkout_no_colon = 1

This will use an alternate layout when checking out a project. For example, setting the
option above and checking out the home project will generate the home/obsgeeko direc-
tory structure instead of the single home:obsgeeko directory.

However, this guide uses the default configuration with colons.

1.6 Setting Up Your Home Project for the First Time
This section shows how to set up your home project after creating an openSUSE account.

When you log in to your home project for the rst time, it will be empty. To build packages, you
need to select build targets (operating systems and architectures) rst. Build targets are defined
project-wide and every package in a project is built for each build target. However, you can
disable build targets for a specific package.

Setting up a home project is done as shown below.

PROCEDURE 1.2: ADDING GLOBAL BUILD TARGETS TO YOUR HOME PROJECT

1. Log in to the Open Build Service instance.

2. Click the Your Home Project link in the Places menu on the left.

3. Click the Repositories tab, then the Add from a Distribution link.

4. Select the distributions you want to build for.
OBS shows several Linux distributions. For SUSE distributions, it is recommended to ac-
tivate at least openSUSE Tumbleweed and the latest openSUSE Leap release. To enable
package builds for SUSE Linux Enterprise, mark one of the openSUSE Backports for SLE 12.

8 Setting Up Your Home Project for the First Time

When you select a distribution, OBS shows a message that the distribution has been suc-
cessfully added it to your home project.

5. Click the Overview tab to see the available build targets on the right side.

To add more build targets, repeat the procedure above.

To ne tune your build targets, click the Repositories tab, nd the respective build target, and
click the Edit repository link. This shows the available architectures and additional package repos-
itories you can add.

1.7 Creating a New Package Within Your Home
Project
This section demonstrates how to create packages for different SUSE distributions from some
simple C++ source code hosted on GitHub (the “upstream repository”).

Note: Check the License First
Before building, go to the upstream homepage or documentation and check the license.

For example, in the openSUSE Build Service, you may only redistribute source code which
was distributed to you under an open source license. If you are submitting a package to
openSUSE, its source code will be checked for license compliance. If your package is not
released under an open source license, it will be rejected.

You can nd a list of already used licenses in OBS at https://license.opensuse.org . For
more details and a comparison of open source licenses in general, see https://en.wikipedi-

a.org/wiki/Comparison_of_free_and_open-source_software_licenses .

To create a package from the upstream repository, follow the steps below.

1. Set up your home project as shown in Section 1.6, “Setting Up Your Home Project for the First

Time”.

2. In the terminal, choose or create a directory on a local partition that has enough space
to hold the package sources.

3. Check out your home project:

geeko > osc checkout home:obsgeeko

9 Creating a New Package Within Your Home Project

https://license.opensuse.org
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

This creates an empty home:obsgeeko directory in the current directory.

4. Create a new package in your local working directory:

geeko > cd home:obsgeeko
geeko > osc mkpac my-first-obs-package

5. Get the source code from the upstream repository and save it in home:obsgeeko/my-
first-obs-package.
Download a TAR archive of the sources. You do not have to unpack it yet.
In our example, the upstream repository is hosted on GitHub and you can use the following
URL: https://github.com/obs-example/my-first-obs-package/releases . If there is no pub-
lished release, click the Clone or download button and download the latest sources using
the Download ZIP link.

6. Create the build recipe. This le contains metadata and build instructions.
In this example, we are building an RPM for openSUSE. For RPM-based distributions, we
create a spec le. The skeleton of such a spec le looks like this:

EXAMPLE 1.1: SKELETON OF A SPEC FILE

#
spec file for package my-first-obs-package
#
-- Copyright omitted --

Name: my-first-obs-package 1

Version: 0.1.0 1

Release: 0 1

License: GPL-3.0 1

Group: Documentation 1

Summary: Frobnication Tool 1

Url: https://github.com/obs-example/my-first-obs-package 1

Source: my-first-obs-package-%{version}.tar.gz 1

BuildRequires: gcc 2

BuildRequires: cmake 2

BuildRoot: %{_tmppath}/%{name}-%{version}-build

%description 3

This tool frobnicates the bar with the foo when choosing the baz.

%prep 4

%setup -q -n %{name}-%{version}

10 Creating a New Package Within Your Home Project

https://github.com/obs-example/my-first-obs-package/releases

%build 5

%install 6

%files 7

%defattr(-,root,root,-)
%doc README LICENSE *.txt
%{_bindir}/*

%changelog 8

1 The Header. Metadata like package name, version, release, license, the RPM group,
a brief summary, the upstream URL, and the name of the source le.

2 Build Requirements. Lists package dependencies that are required for building. The
listed packages are downloaded and installed before building the package.

3 The Description Section. Describes the purpose of the package and gives a compre-
hensive explanation.

4 The Preparation Section. Prepares the sources for building. This usually includes
unpacking them with the %setup macro and patching them using the %patch macro.
(For more information about patching, see Section 1.8, “Patching Source Code”.)

5 The Build Section. Contains commands or RPM macros for building the package.

6 The Install Section. Contains commands or RPM macros which create directories or
copy les to the installation location.

7 The Files Section. Lists all les and directories which belong to the package. Docu-
mentation-related les are marked with %doc, and they are automatically installed
in the default documentation directory.

8 The Changelog Section. This section is usually empty. Instead, OBS searches for a le
with the extension .changes. If such a le exists in the project directory, it will be
automatically included as a changelog. The changelog le itself contains a high level
overview of the history of the package.

For the complete spec le, see https://build.opensuse.org/package/view_file/home:obs-

geeko/my-first-obs-package/my-first-obs-package.spec .

7. Create a changelog le:

geeko > osc vc

11 Creating a New Package Within Your Home Project

https://build.opensuse.org/package/view_file/home:obsgeeko/my-first-obs-package/my-first-obs-package.spec
https://build.opensuse.org/package/view_file/home:obsgeeko/my-first-obs-package/my-first-obs-package.spec

This command opens a text le with the following content in the default editor:

Fri Aug 23 12:31:41 UTC 2017 - geeko@example.com

Add a short summary of your changes. Usually, a changelog entry contains a high-level
overview such as the version of the software in the package, which patches you applied,
and other changes in your project.
Save the le and leave the editor. osc then creates the le my-first-obs-pack-
age.changes.
Your project directory should now look something like this:

project directory
 ├── my-first-obs-package-0.1.0.tar.gz
 ├── my-first-obs-package.changes
 └── my-first-obs-package.spec

8. Add all the les to your working directory:

geeko > osc add *.spec *.changes *.tar.gz

9. Build the package for the default build target:

geeko > osc build --local-package

The option --local-package is used here, because the package is not yet submitted to
OBS.
The default build target is set in the osc configuration le ~/.oscrc using the variable
build_repository. On openSUSE Build Service this is usually openSUSE Tumbleweed.
To build the package for another build target, use the following command:

geeko > osc build --local-package openSUSE_Tumbleweed x86_64 *.spec

10. Check whether your build was successful. If everything was ne, commit the les to your
package to your home project on OBS:

geeko > osc commit

If you encounter build errors, use the osc buildlog command to review them, as de-
scribed below.

12 Creating a New Package Within Your Home Project

To watch the current build of a specific build target, use the buildlog (alias bl) subcommand
inside your working directory:

geeko > osc buildlog openSUSE_Tumbleweed x86_64

1.8 Patching Source Code
This section describes how to tell Open Build Service to apply a patch to your package before
building it. We use the same package as shown in Section 1.7, “Creating a New Package Within Your

Home Project”.

There are different reasons for patching a package.

You Do Not Have Permission to Commit Upstream. Often, you cannot commit changes
directly to the upstream repository. If you send changes to the upstream repository, they
may be integrated late or even be rejected.
Patch les allow making changes while keeping source code clean while insulating your
package from upstream's release cycle, coding style, and internal workings.

Apply Security and Bug Fixes or Distribution-Specific Fixes.

Change the Source Code, So It Builds on OBS.

Improve Security and Traceability. Untouched source code in OBS is easier to check for
changes than a modified one. The check is usually done with a checksum (MD5 or SHA).

Improve Structure and Consistency. From an organizational point of view, it is better
when changes are separated from the source code. With the changes inside the patch le,
everybody can see what was changed and which les changes were applied to.

We assume that you already have a project as described in Section 1.7, “Creating a New Package

Within Your Home Project”. The project directory should look similar to this:

project directory
├── my-first-obs-package-0.1.0.tar.gz
├── my-first-obs-package.changes
└── my-first-obs-package.spec

In our case, we want to modify the source code under src/main.cpp to change the greeting
message.

13 Patching Source Code

PROCEDURE 1.3: PATCHING

1. In the terminal, switch to your working directory.

2. Prepare a patch le:

a. Unpack the source code:

geeko > tar xvf my-first-obs-package-*.tar.gz

If you have downloaded the archive from GitHub, the archive contains a directory
in the form NAME-VERSION. In our case, unpacking the downloaded archive results
in the my-first-obs-package-0.1.0/ directory.

b. Switch to the directory my-first-obs-package-0.1.0/ and make a copy of the
original C++ source le:

geeko > cd my-first-obs-package-0.1.0/
geeko > cp src/main.cpp src/main.cpp.orig

c. Make your changes in src/main.cpp.

d. Create a di and carefully inspect your changes:

geeko > diff -u src/main.cpp.orig src/main.cpp

The output should look like this:

--- src/main.cpp.orig 2017-08-09 16:28:31.407449707 +0200
+++ src/main.cpp 2017-08-09 16:28:49.131541230 +0200
@@ -2,7 +2,7 @@

 int main()
 {
- std::cout<<"Hello OBS!\n";
+ std::cout<<"Hello Alice!\n";

 return 0;
 }

e. Redirect the di into a le:

geeko > diff -u src/main.cpp.orig src/main.cpp \
 > ../my-first-obs-package_main.diff

14 Patching Source Code

You can use an arbitrary name for the patch le. However, we recommend giving
the le a descriptive name and adding the name of the upstream project. If there is
a bug or issue number associated with the patch, add it to the le name as well. You
can either use .diff or .patch as the le extension.

f. You can now remove the directory my-first-obs-package-0.1.0/, as it is not
needed anymore.

3. Open your spec le and add the following line in the header under the Source line like this:

Source: my-first-obs-package-%{version}.tar.gz
Patch0: my-first-obs-package_main.diff

4. In the %prep section, add the %patch macro:

%prep
%setup -q -n %{name}-%{version}
%patch0

5. Add your patch le to the local repository:

geeko > osc add my-first-obs-package_main.diff

6. Rebuild your package:

geeko > osc build

7. If everything was successful, commit your changes:

geeko > osc commit

When prompted, specify and save a commit message.

If you are dealing with a lot of patches, you might nd the quilt tool useful. For more infor-
mation about quilt, see https://savannah.nongnu.org/projects/quilt .

1.9 Branching a Package
This section describes how to collaborate between projects. You can branch any package in OBS
into any project that you have write permission for. By default, new branches are created as a
subproject of your home project. These default branches have names beginning with home:ob-
sgeeko:branches.

15 Branching a Package

https://savannah.nongnu.org/projects/quilt

There are different reasons to branch a package:

To modify the source code, building it, trying the effect of the changes, and submitting
back changes to the original project. Usually, you use this workflow when you do not have
write permissions for a project.

To make changes without affecting the original project.

To apply temporary changes to try out a different path of development.

Let us assume that there is a user obsgeeko who has created a package home:obsgeeko/my-
first-obs-package on OBS. Now, a second user, obstux, would like to submit a code change
request to that package.

User obstux has to perform the following steps:

PROCEDURE 1.4: BRANCHING FROM A PROJECT

1. In the terminal, choose or create a directory on a local partition with enough free space.

2. Create a branch from geeko's home project:

tux > osc branchco home:obsgeeko my-first-obs-package

This creates a branched package in OBS at home:obstux:branches/my-first-obs-pack-
age and checks out a directory home:obstux:branches:home:obsgeeko:my-first-obs-
package.

3. Change the working directory to your checked-out branch:

tux > cd home:obstux/branches/home/obsgeeko/my-first-obs-package

4. Make changes as shown in Section 1.8, “Patching Source Code”.

5. Build the package for the default build target:

geeko > osc build

6. Review the build log:

geeko > osc buildlog openSUSE_Tumbleweed x86_64

7. Make sure all included and removed les are added to the OBS repository:

tux > osc addremove

16 Branching a Package

8. If everything was successful, commit your changes:

geeko > osc commit

When prompted, specify and save a commit message.

9. Create a submit request and finish it by adding a comment:

tux > osc submitreq

Used without any options, the submitreq command submits back to the package where
you branched from. Note that with the submit request, you submit a specific version of
the source. Later changes do not get automatically fetched by default.
If there are multiple packages in a branch, all packages will be submitted together. To
avoid that, specify the names of the source and destination projects and the package name:

tux > osc submitreq home:obstux:branches:home:obsgeeko my-first-obs-package
 home:obsgeeko

User obstux has finished the task now and the submit request is assigned to obsgeeko. User
obsgeeko can now either accept or decline the submit request (“SR”). Also, as long as the SR
remains open, obstux can also supersede it with a new request.

Accept the Submit Request. The changes from user obstux will be integrated into the
home:obsgeeko project. The accepted submit request will be closed. To make further
changes, obstux needs to create a new submit request.

Decline the Submit Request. The changes from user obstux are not integrated into the
home:obsgeeko project.
Reasons for declining a submit requires can be build errors or style issues. The reviewer
usually gives a reason when declining the submit request. User obstux can then 1) correct
their submission using a new submit request that supersedes the previous one, 2) disagree
and reopen the request, or 3) accept the decline and revoke the request.

Supersede the Submit Request. As long as the SR is still open (and this includes the case
when it has been declined), obstux can continue making changes in their local checkout
and, at any time, issue a new submit request using the above workflow. At submission time,
OBS will detect the existing (previous) SR and ask the submitter whether they would like
to supersede it. If obstux answers "yes" here, the new SR will supersede the previous one.
Alternatively, by answering "no" to the supersede question, a second SR will be created
alongside the previous one.

17 Branching a Package

User obsgeeko is responsible for the following.

Note
If preferred, the below steps can also be performed using the OBS GUI. Requests can be
managed under the Tasks tab.

PROCEDURE 1.5: DEALING WITH SUBMIT REQUESTS

1. Show all submit requests that belong to your home project

geeko > osc request list -s new -P home:obsgeeko

2. Find the correct submit request. If you know the correct number you can use:

geeko > osc request show 246

3. Review the request and decide:

• Accept the submit request:

geeko > osc request accept 246 --message="Reviewed OK."

• Decline the request and give a reason:

geeko > osc request decline 256 --message="Declined, because of missing
 semicolon."

If the submit request has been accepted, the changes will be integrated into the home project
home:obsgeeko.

If the submit request has been declined, you can x the issues and resubmit the package. When
creating a new submit request, osc will prompt to supersede the previous request.

1.10 Installing Packages from OBS
OBS provides a place containing all the distribution-specific and architecture-specific versions of
successfully built packages. When you create a package in your OBS home project, all successful-
ly built packages appear under the https://download.opensuse.org/repositories/home:/
obsgeeko URL.

18 Installing Packages from OBS

However, this is only true for the home project itself and manually created subprojects, but not
for subprojects created as a result of branching a package. Branched projects are not published
by default. If you need the build results, download the binaries manually with osc getbinaries.

For example, if you have enabled the openSUSE Tumbleweed distribution, all packages for
openSUSE Tumbleweed will be published at https://download.opensuse.org/reposito-
ries/home:/obsgeeko/openSUSE_Tumbleweed. This download repository is used as an installa-
tion source for Zypper or YaST.

To install the my-first-obs-package package from your home project, use the following steps:

1. Inside your working directory, determine the download repository URLs:

geeko > osc repourls
https://download.opensuse.org/repositories/home:/obsgeeko/openSUSE_Tumbleweed/
home:obsgeeko.repo
https://download.opensuse.org/repositories/home:/obsgeeko/openSUSE_42.2/
home:obsgeeko.repo

2. Copy the desired URL of your preferred distribution. In our case, that is the line containing
openSUSE_Tumbleweed.

3. Use zypper and add the copied URL:

root # zypper addrepo https://download.opensuse.org/repositories/home:/obsgeeko/
openSUSE_Tumbleweed/home:obsgeeko.repo

When prompted, accept the GPG key of the download repository.

4. Install the package:

root # zypper install my-first-obs-package

To update the package again, run Step 4. You do not need to execute Step 1, as the repository
is already configured in your system.

1.11 Other Useful osc Commands
The following list gives you a short overview of frequently used osc subcommands that were
not mentioned in this guide. For an overview of their syntax, use osc SUBCOMMAND --help.

osc diff

Generates a di, comparing local changes against the remote OBS project.

19 Other Useful osc Commands

osc list

Shows source or binaries on an OBS server.

osc prjresults

Shows project-wide build results.

osc status

Shows the status of les in your working directory

20 Other Useful osc Commands

II Concepts

2 Supported Build Recipes and Package Formats 22

2 Supported Build Recipes and Package Formats

2.1 About Formats

OBS differentiates between the format of the build recipes and the format of the installed pack-
ages. For example, the spec recipe format is used to build RPM packages by calling rpmbuild.

In most cases, the build result format is the same as the package format used for setting up the
build environment, but sometimes the format is different. An example is the KIWI build recipe
format, which can build ISOs, but uses RPM packages to set up the build process.

OBS currently supports the following build recipe formats and packages:

SUPPORTED PACKAGE FORMATS

RPM package format, used for all RPM-based distributions like openSUSE, SUSE Linux
Enterprise, Fedora, and others.

DEB package format, used in Debian, Ubuntu, and derived distributions

Arch package format, used by Arch Linux

SUPPORTED BUILD RECIPE FORMATS

Spec format for RPM packages

Dsc format for DEB packages

KIWI format, both product and appliances

preinstallimage

SimpleImage format

Mkosi format to build images

If no build recipe format and binary format are specified in the project configuration, OBS tries
to deduce them from the preinstall list, which includes the name of the used package manager.
This means that you need to manually configure the kiwi build recipe, as an RPM package
format will select spec builds as default. This configuration is done by adding a Type line to
the project configuration.

22 About Formats

2.2 RPM: Spec

RPM (RPM Package Manager) is used on openSUSE, SUSE Linux Enterprise, Red Hat, Fedora,
and other distributions. For building RPMs you need:

.spec

the spec le for each package containing metadata and build instructions. OBS parses the
spec le's BuildRequires lines to get a list of package dependencies. OBS uses this infor-
mation to both build the packages in the correct order and also for setting up the build
environment. The parser understands most of RPMs macro handling, so it is possible to use
architecture specific BuildRequires, conditional builds and other advanced RPM features.

.changes

the le which contains the changelog.

2.3 Debian: Dsc

DEB packages are used on all Debian or Ubuntu based distributions. For building .deb les,
you need:

debian.control

The le contains the meta information for the package like the build dependencies or some
description.

debian.rules

This le describes the build section of the DEB building process. There are the configure
and make compile commands including other DEB building sections.

PACKAGE.dsc

In this le you describe the package names of each subpackage and their dependency level.
Unlike RPM, the release numbers are not increased automatically during build unless the
keyword DEBTRANSFORM-RELEASE is added to the le.

23 RPM: Spec

2.4 Arch: pkg
Pkg les is used on Arch Linux and its derivatives. For building Pkg you need:

PKGBUILD

It contains the build description and the source tarball. The le PKGBUILD does not have
macros like %{buildroot}. It contains variables, for example, makedepends=(PACKAGE1,
PACKAGE2). These variables are parsed by OBS and uses them as dependencies. On Arch
Linux you typically build packages without subpackage. They are no *-dev or *-devel
packages.

2.5 KIWI Appliance
KIWI (https://github.com/OSInside/kiwi) is an OS appliance builder that builds images for vari-
ous formats, starting from hardware images, virtualization systems like QEMU/KVM, Xen and
VMware, and more. It supports a wide range of architectures, which are x86, x86_64, s390 and
ppc.

For building an image in KIWI you need:

my_image.kiwi

Contains the image configuration in XML format. Full XML schema documentation can be
found https://osinside.github.io/kiwi/image_description.html .

config.sh (optional)

configuration script that runs at the end of the installation, but before package scripts have
run.

root/

directory that contains les that will be applied to the built image after package installa-
tion. This can also be an archived and compressed directory, usually named root.tar.gz.

Note
OBS only accepts KIWI configuration les with a .kiwi suffix. Other naming schemes
KIWI supports like config.xml, are ignored in OBS.

For more information about building images with KIWI, see the https://osinside.github.io/ki-

wi/building_images.html .

24 Arch: pkg

https://github.com/OSInside/kiwi
https://osinside.github.io/kiwi/image_description.html
https://osinside.github.io/kiwi/building_images.html
https://osinside.github.io/kiwi/building_images.html

2.6 SimpleImage
This format can be used to get simple rootfs tarball or squashfs image. It does not contain a
bootloader or a kernel. For advanced features, use KIWI. Use SimpleImage for simple rootfs
tarball/squashfs image of any distribution that is supported by OBS but does not have anything
fancier than that.

For building a SimpleImage, you need a simpleimage le. Be aware of the following points:

SimpleImage uses a similar syntax than a spec le.

Supported tags include Name, Version, BuildRequires, and #!BuildIgnore.

Additional customization with %build phase is supported.

RPM macros are not supported, but $SRCDIR shell variable is available.

EXAMPLE 2.1: SIMPLEIMAGE FILE (simpleimage)

Name: example-image
Version: 1.0
BuildRequire: emacs
#!BuildIgnore: gcc-c++

%build
Set root password
passwd << EOF
opensuse
opensuse
EOF

Enable ssh
systemctl enable sshd

2.7 AppImage

2.8 Flatpak
The Flatpak (https://flatpak.org/) format can be used to generate desktop apps for Linux.

For building an installable Flatpak bundle, you need a flatpak.yaml manifest le. See Flatpak

Manifests (https://docs.flatpak.org/en/latest/manifests.html) for the full documentation.

25 SimpleImage

https://flatpak.org/
https://docs.flatpak.org/en/latest/manifests.html
https://docs.flatpak.org/en/latest/manifests.html

Also some project and package configuration is necessary.

QUICK START

To avoid having to enter the configuration manually, you can:

go to the Image Templates (https://build.opensuse.org/image_templates) and create a
project from there, or

branch the Template Package (https://build.opensuse.org/package/show/OBS:Flatpak:Tem-

plates/FlatpakTemplate)

MANIFEST FORMAT

Input format is YAML (https://yaml.org) . Although flatpak also accepts JSON, we are using
YAML in Open Build Service, because we have a special additional eld in form of a YAML
comment.

You can use JSON, as it is a subset of YAML. But be aware that flatpak accepts non-standard
// comments, while Open Build Service does not.

#!BuildVersion - Use this eld to specify the version of your app so the .flatpak le
will be versioned. Flatpak manifests do not have a version eld.

To learn YAML, have a look at this YAML Tutorial (https://www.yaml.info/) .

The base images for Freedesktop, GNOME, KDE are maintained in the OBS:Flatpak (https://

build.opensuse.org/project/show/OBS:Flatpak) repository in form of rpm packages. They are
generated by installing the images from Flathub (https://flathub.org/) and packing the directo-
ries into a tar archive.

EXAMPLE 2.2: FLATPAK MANIFEST (flatpak.yaml)

##
Flatpak manifest example for Open Build Service
https://docs.flatpak.org/en/latest/manifests.html
Input should be YAML, even though the file can have
a .json suffix (JSON is a subset of YAML).
Don't use '//' comments!
##

Special OBS field because flatpak does not have a version field
Default will be '0' if the field is missing.
#!BuildVersion: 3.14.15

26 Flatpak

https://build.opensuse.org/image_templates
https://build.opensuse.org/package/show/OBS:Flatpak:Templates/FlatpakTemplate
https://build.opensuse.org/package/show/OBS:Flatpak:Templates/FlatpakTemplate
https://yaml.org
https://www.yaml.info/
https://build.opensuse.org/project/show/OBS:Flatpak
https://build.opensuse.org/project/show/OBS:Flatpak
https://flathub.org/

app-id: org.gnome.Mahjongg
runtime: org.gnome.Platform
sdk: org.gnome.Sdk
runtime-version: '3.36'
command: gnome-mahjongg

finish-args:
 - --share=ipc
 - --socket=fallback-x11
 - --socket=wayland
 - --device=dri
 - --metadata=X-DConf=migrate-path=/org/gnome/Mahjongg/

cleanup:
 - "/share/man"

modules:
- name: gnome-mahjongg
 buildsystem: meson
 sources:
 - type: archive

 # Source archives should be put into the OBS package, but you can
 # keep the original URL from where it was downloaded here.
 url: https://download.gnome.org/sources/gnome-mahjongg/3.36/gnome-
mahjongg-3.36.2.tar.xz

 # You can also just specify a simple filename
 # url: gnome-mahjongg-3.36.2.tar.xz

 # flatpak-builder will do a checksum
 sha256: 'd2e8f1563ee03d112a17042c4e99971295b36f3ba795c7d905d636cc94b8ae97'

EXAMPLE 2.3: FLATPAK PROJECT CONFIG (prjconf)

Type: flatpak
Support: kmod-compat kernel-default perl-YAML-LibYAML

EXAMPLE 2.4: FLATPAK PROJECT META EXAMPLE

<project name="Your:Project:Name">
 <title>Title</title>
 <description>Description</description>
 <repository name="openSUSE_Leap_15.2">
 <path project="OBS:Flatpak" repository="openSUSE_Leap_15.2"/>
 <arch>x86_64</arch>
 </repository>
 <repository name="openSUSE_Leap_15.1">

27 Flatpak

 <path project="OBS:Flatpak" repository="openSUSE_Leap_15.1"/>
 <arch>x86_64</arch>
 </repository>
</project>

2.9 mkosi
Mkosi (https://github.com/systemd/mkosi/) allows building images for rpm, arch, deb and gen-
too based distributions, on any architecture that supports UEFI. Images built with mkosi will
follow the Discoverable Partitions Specification (https://systemd.io/DISCOVERABLE_PARTITIONS/)

and will be bootable on baremetal (UEFI), virtual machines (UEFI), containers via sys-

temd-nspawn, (https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html) or
as Portable Services (https://systemd.io/PORTABLE_SERVICES/) in systemd.

For building an image in mkosi you need the mkosi.my_image recipe le. This le contains the
image configuration in INI format. All available options can be found in the Mkosi documentation

(https://github.com/systemd/mkosi/blob/main/mkosi.md) .

Note
Ensure to set Type: mkosi in the repository's prjconf where the image builds are enabled
on OBS.

EXAMPLE 2.5: MKOSI MINIMAL BUILD RECIPE (mkosi.suse) FOR A TUMBLEWEED IMAGE

[Distribution]
Distribution=opensuse
Release=tumbleweed

[Output]
Format=gpt_ext4

[Content]
Password=
Autologin=yes
Packages=
 patterns-base-minimal_base

EXAMPLE 2.6: MKOSI PROJECT CONFIG (prjconf)

%if "%_repository" == "suse"
Type: mkosi

28 mkosi

https://github.com/systemd/mkosi/
https://systemd.io/DISCOVERABLE_PARTITIONS/
https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
https://systemd.io/PORTABLE_SERVICES/
https://github.com/systemd/mkosi/blob/main/mkosi.md
https://github.com/systemd/mkosi/blob/main/mkosi.md

Substitute: integritysetup
Substitute: veritysetup
Prefer: openSUSE-release-appliance-custom python310-cryptography
%endif

EXAMPLE 2.7: MKOSI PROJECT META EXAMPLE

<project name="Your:Project:Name">
 <title>Title</title>
 <description>Description</description>
 <repository name="suse">
 <path project="openSUSE:Factory" repository="snapshot"/>
 <arch>x86_64</arch>
 </repository>
</project>

29 mkosi

III Setup

3 osc, the Command Line Tool 31

4 Build Configuration 37

3 osc, the Command Line Tool

3.1 Installing and Configuring
To work with Open Build Service, install the osc command line tool from your preferred
openSUSE distributions or from the OBS project openSUSE:Tools. The tool runs on any mod-
ern Linux system and is available for different distributions, like CentOS, Debian, Fedora, SLE,
openSUSE, to name a few.

For SUSE related systems, install it with the zypper command (replace DISTRI with your dis-
tribution):

root # zypper addrepo https://download.opensuse.org/repositories/openSUSE:/Tools/DISTRI/
openSUSE:Tools.repo
root # zypper install osc

For other systems, use your preferred package manager.

As an alternative, use the AppImage le. An AppImage le is a packaged application and its
dependencies which can run on many distributions. Download the le, save it in your ~/bin
directory, and make the le executable.

3.2 Configuring osc
Usually, the default configuration is appropriate in most cases. There are some special configu-
ration option which might be helpful if you have special needs.

Some useful options in the ~/.oscrc le are described in the following list (all under the gen-
eral section):

apiurl (string)

Used to access the Open Build Service (OBS) API server. This is needed if you work with
different OBS server (for example, a public and a private one). If you have to distinguish
different servers, you can also use the -A option. Usually, it is good practice to create an
alias like this:

alias iosc="osc -A https://api.YOURSERVER"

31 Installing and Configuring

You use iosc the same as with osc.

extra-pkgs (list)

Contains a space-separated list of package. These extra packages are installed when you
build packages locally. Useful when you need an additional editor inside the build envi-
ronment, for example vim.

build_repository (string)

Sets the default platform when omitted in osc build.

exclude_glob (list)

Contains a list of space separated le names to ignore. For example, *.bak to ignore all
backup les.

checkout_no_colon (bool)

Separates projects and subprojects in directories and subdirectories instead of creating a
single directory. For example, setting the option and checking out the home project will
lead to a directory structure home/obsgeeko instead of the single directory home:obs-
geeko.

use_keyring (bool)

Use the default keyring instead of saving the password in the OBS configuration le. For
KDE the KWallet is used, for GNOME it is Seahorse.

cafile (string)

Provide set of trusted CA certificates for HTTPs requests. Expects CAs in a sin-
gle le containing a bundle of CA certificates in PEM format. More details can be
found in OpenSSL documentation (https://www.openssl.org/docs/manmaster/man3/SSL_C-

TX_load_verify_locations.html) .

capath (string)

Provide set of trusted CA certificates for HTTPs requests. Expects a directory containing CA
certificates in PEM format. More details can be found in OpenSSL documentation (https://

www.openssl.org/docs/manmaster/man3/SSL_CTX_load_verify_locations.html) .

32 Configuring osc

https://www.openssl.org/docs/manmaster/man3/SSL_CTX_load_verify_locations.html
https://www.openssl.org/docs/manmaster/man3/SSL_CTX_load_verify_locations.html
https://www.openssl.org/docs/manmaster/man3/SSL_CTX_load_verify_locations.html
https://www.openssl.org/docs/manmaster/man3/SSL_CTX_load_verify_locations.html

3.3 Usage

3.3.1 Getting Help

To get a general help about this command, use osc --help. For help of specific subcommands,
use osc help SUBCOMMAND.

Most commands can be called by a long name (like status) or by one or more aliases (as st).

3.3.2 Using osc for the First Time

When you use the osc command for the rst time, the command will ask you for your credentials
of your OBS instance. The credentials are stored in the configuration le ~/.oscrc.

By default, the password is stored as plain text. In terms of security, that is not ideal. To avoid
the issue:

Use a Password Manager. Set the option use_keyring to 1 after you have created a con-
figuration le for the rst time. Remove your credentials sections from your configuration
le. The next time osc asks for your username and password, it will store it in the password
manager instead of the configuration le.

Obfuscating the Password. Set plaintext_passwd to 0. This is not a security feature, but
it obfuscates the password in the configuration le.

If you prefer your current password manager, set the option use_keyring to 1 after you have
authenticated it.

3.3.3 Overview of Brief Examples

The osc command is similar to git: The main command osc has several subcommands. It serves
as client and it is used to build packages locally, submit les to a remote OBS instance, edit
metadata, or query build results.

List Existing Content on the Server

osc ls #list projects
osc ls Apache #list packages in a project

33 Usage

osc ls Apache flood #list files of package of a project

osc ls shows you a list of projects on OBS. Which OBS instance it shows depends on the
option apiurl in the configuration le. By default, the openSUSE Build Server is used. If
you need another server, use the -A option as shown in Section 3.2, “Configuring osc”.

Checkout Content

osc co Apache # entire project
osc co Apache flood # a package
osc co Apache flood flood.spec # single file

Update a Working Directory

osc up
osc up [directory]
osc up * # from within a project dir, update all packages
osc up # from within a project dir, update all packages AND check out
 all newly added packages

Upload Changed Content

osc ci # current dir
osc ci [file1] [file2] # only specific files
osc ci [dir1] [dir2] ... # multiple packages
osc ci -m "updated foobar" # specify a commit message

Check the Commit Log

osc log

Show the status (which files have been changed locally)

osc st
osc st [directory]

If an update cannot be merged automatically, a le is in 'C' (conflict) state, and conflicts are
marked with special lines. After manually resolving the problem, use osc resolved FILE.

Mark files to be Added or Removed on the Next Checkin

osc add foo
osc rm foo

Add all New Files in Local Copy and Removes all Disappeared files

osc addremove

34 Overview of Brief Examples

Generate a diff to view the changes

osc diff [file]

Show the Build Results of the Package

osc results
osc results [platform]

Show the Log File of a Package

(you need to be inside a package directory)

osc buildlog [platform] [arch]

Show the URLs of .repo Files which are Packages Sources for Package Managers

osc repourls [dir]

Trigger a Package Rebuild for all Repositories/Architectures of a Package

osc rebuildpac [dir]

Build a Package on Your Computer

osc build [platform] [arch] [specfile] [--clean|--noinit|...]

Show Configured Platforms/Build Targets

osc platforms [project]

Show Possible Build Targets for Your Project

osc repos

Show Metadata

osc meta prj [project]
osc meta pkg [project] [package]
osc meta user [username]
osc meta prjconf [project]

Edit Meta Information

Create new package/project if it does not exist. It will open an editor with the raw XML
metadata. To avoid need to edit XML, you can use the web UI instead.

35 Overview of Brief Examples

osc meta prj -e [project]
osc meta pkg -e [project] [package]
osc meta prjconf -e [project]

(The project configuration may well be empty. It is needed in special cases only.)

Update Package Metadata on OBS with Metadata Taken from Spec File

osc updatepacmetafromspec [dir]

36 Overview of Brief Examples

4 Build Configuration

4.1 About the Build Configuration

Each project has a build configuration which defines the setup of the build system and the publish
behaviour. Usually the distribution base is defining it and you do not need to change anything.
However, when you change it, it can be used for the following reasons:

Handle compatibility layers.

Switch on or o certain features during the build.

Decide which package is installed during build.

Resolve dependency problems like when there are multiple providers for a dependency:

Handle user decisions like macro settings

Modify publish behaviour, e.g. define metadata or filter binaries.

The build configuration can be stored in multiple places. Inside of OBS it can be stored only
once per project. However, it is possible to define exceptions via if-conditions, for example
per repository name or architecture. At the project level, the build configuration is sometimes
referred to as the "project config", or "prjconf" for short. At build time, the configuration gets
merged according to the repository path configuration defined in the project metadata. This
resulting configuration can be requested using osc buildconfig. To view or edit the build
configuration in projects, use one of the following methods

With osc. Use osc meta prjconf in your working directory of your project.

In the OBS Web UI. Via the Project Config tab.

With the OBS API. Reachable via the /source/PROJECT/_config path.

Via git/scmsync. Store a le called '_config' in a git repository used via the scmsync mech-
anism for a project.

37 About the Build Configuration

4.2 Configuration File Syntax
The syntax is basically the same as in RPM spec les. However, it is independent of the packaging
format used. The build configuration (prjconf) is parsed by OBS. This means, you can use RPM
features like macros or conditions in the configuration. All lines (except conditionals) have the
form:

keyword: arguments

Use the conditionals (%if or %ifarch) if a line should only be used in some condition.

Many keywords, like `Required` or `BuildFlags`, do not replace existing data, but add to it. This
means you can have multiple `BuildFlags` lines instead of having one line with all the ags
you need.

An exclamation mark `!` can be prepended to the argument to remove an existing entry from
the data.

In the following list, the placeholder PACKAGES indicates a package base name (or names). When
specifying multiple packages, separate their base names with spaces. For example, as a package
name you need the base name like gcc but not the full name as in gcc-1.2.3.i386.rpm.

The following list contains a list of allowed keywords in the build configuration (prjconf):

AVAILABLE KEYWORDS IN BUILD CONFIGURATION

BinaryType: TYPE (OBS 2.4 or later)

The binary type is the format of the packages that make up the build environment. This
is usually set automatically depending on the recipe type and preinstall package list. Cur-
rently understood values are: `rpm`, `deb`, and `arch`.
Sets the binary format used to set up the build environment. For example a package with
spec build description may use and generate deb packages instead of RPMs. If no binary
type is specified, OBS deduces it from the build recipe type. If the recipe type is also not
set, OBS looks at the Preinstall package list for a hint.

BuildEngine: ENGINE

Use an alternative build engine. Examples are `mock` (for Fedora and Red Hat) and `de-
bootstrap` (for Debian), `debbuild` (to build debian packages with spec les), `podman`
(container builds). Here is an example config for `debbuild`:

Type: spec
Repotype: debian
Binarytype: deb

38 Configuration File Syntax

BuildEngine: debbuild
Support: pax debbuild

BuildFlags: FLAG:VALUE

The BuildFlags keyword defines ags for the build process. The following values for
FLAG are usable.

allowrootforbuild

Allow any package build to use root user for building. This still needs a marker inside
of the build description to enable it.

vmfstype:TYPE

Defines a specific le system when building inside of a VM. Possible values are ext2,
ext3, ext4, btrfs, xfs, reiserfs (v3).

vmfsoptions:OPTION

Sets options for le system creation. Currently only the `nodirindex` option is sup-
ported, which disables directory indexing for ext le systems. This makes le order-
ing inside of directories reproducible but may have a negative performance impact.
vmfsoptions:nodirindex

kiwiprofile:PROFILE

Selects the profiles to build in kiwi appliance builds.

logidlelimit:SECONDS

Build jobs which do not create any output are aborted after some time. This ag can
be used to modify the limit.

excludebuild:PACKAGE

Exclude a package from building. If a package builds multiple flavors, the corre-
sponding flavor can be specified via the `package:flavor` syntax.

onlybuild:PACKAGE

DANGER: this may remove many build results when introduced the rst time! It can
be used to maintain a whitelist of packages to be built. All other packages will turn
to excluded state and get removed if available.

useccache:PACKAGE

Configure usage of ccache when building the specified package.

ccachetype:TYPE

Defines the ccache implementation, possible values are: ccache, sccache

39 Configuration File Syntax

obsgendiff

OBS can run an external program that has access to the current build and the previ-
ously successful result, e.g. to generate a difference or a changelog from the di.
OBS will run all scripts in /usr/lib/build/obsgendiff.d/ on the build host (not
in the %buildroot) when this ag is set. If one of the scripts fails to run or no scripts
are found, then the overall build fails. I.e. if BuildFlags: obsgendiff is set, then
you must provide at least one script in /usr/lib/build/obsgendiff.d/, otherwise
your build will fail.
A common use case for obsgendiff is to run release-compare (https://github.com/

openSUSE/release-compare) after the build.

setvcs

Add the SCM URL to binary results when the package sources are managed via the
scmsync mechanic. The url is written into the VCS tag of rpms when enabling this
functionality.

nodisturl

Skip the embedding of DISTURL tag into binaries. Please note that this might also
break other features like binary tracking. So never do this for maintained binaries.

sbom:FORMAT

OBS 2.11 can produce and publish additional SBOM (Software Bill Of Material) meta
data by enabling this ag. This is currently supported for container and kiwi images
builds and includes only data from installed rpm packages. Supported formats are
spdx and cyclonedx.

slsaversion:VERSION

OBS 2.11 is producing slsa provenance les in version 0 by default at build time,
when enabled. It is possible to switch to v1 by specifing slsaversion:v1 as buildflag.

container-compression-format:FORMAT

Sets a compression format for container layers. Possible values are gzip, zstd, zst-
d:chunked. Every value other than gzip is only supported by podman and buildah.

container-build-format:FORMAT

For podman container builds, it specifies the container config format. Possible values
are 'docker' and 'oci'. The default is 'docker'. The 'docker' format allows a few exten-
sions like ONBUILD, SHELL, DOMAINNAME, COMMENT, HEALTHCHECK amongst
others.

40 Configuration File Syntax

https://github.com/openSUSE/release-compare
https://github.com/openSUSE/release-compare

Conflict: PACKAGE

Specify that a package must not be installed in the build environment.

Conflict: PACKAGE_A:PACKAGE_B

Specify a synthetic conflict between two given packages.

Constraint: SELECTOR STRING (OBS 2.4 or later)

Define build constraints for build jobs. The selector is a colon-separated list which gets a
string assigned. See the build job constraints page for details.

DistMacro: NAME VALUE

Define a macro to be used when parsing the spec les of packages. This is similar to using a
`Macros:` section with the difference that the macro will not be written to the .rpmmacros
le. It should therefore be used for macros that come from packages of the distributions.
Note that the lines of the project config are macro expanded while parsing, so you have
to use `%%` for a literal percent sign in the value.

ExpandFlags: FLAG

Flags which modify the behaviour during dependency resolution.

unorderedimagerepos (OBS 2.10 or later)

The priority of repositories defined in an image build is usually important. This is to
avoid switching repositories when the same package is available in multiple reposi-
tories. However, it might be wanted to ignore that and just pick the highest version.
This can be achieved by defining this ag

preinstallexpand

Preinstall also all dependencies of a preinstalled package. This may increase the
amount of preinstalled packages a lot.

module:NAME-STREAM (OBS 2.10.7 or later)

Enable Red Hat-specific module support in repo md repositories. By default, no mod-
ule is used, so every module needed needs to be specified in the configuration. To
remove a module, add an exclamation mark (!) as prefix.

dorecommends

Try to install all recommended packages. Packages with dependency conflicts are
ignored.

41 Configuration File Syntax

dosupplements

Try to install all supplemented packages. Packages with dependency conflicts are
ignored. This has the downside that new packages can cause different dependency
expansion, so this should only be enabled for special use cases.

ignoreconflicts

Ignore defined conflicts of packages. By default these are reported as unresolvable.
This switch may be useful when packages get not installed in the build environment,
but getting processed afterwards. That tool, e.g. some image building tool, must be
able to handle the situation (e.g. by just using a subset of the packages).

kiwi-nobasepackages

Do not put the require/support/preinstall packages in the repositories offered to the
kiwi build tool. This should have been the default.

keepfilerequires

Dependencies on les are only fulfilled if matching FileProvides are specified in the
build configuration (prjconf). If those are missing, the dependency results in an "un-
resolvable" state for directly required les or in silent breaking of the dependency for
indirectly required les. With this option, all le requires are honoured by default
and lead to "unresolvable" if there are no matching FileProvides defined.

ExportFilter: REGEX ARCHITECTURES

The export filter can be used to export build results from one architecture to others. This
is required when one architecture needs packages from another architecture for building.
The REGEX placeholder must match the resulting binary name of the package. It will export
it to all listed scheduler architectures. Using a single dot will export it to the architecture
which was used to build it. So not using a dot there will filter the package.

FileProvides: FILE PACKAGES

OBS ignores dependencies to les (instead of package names) by default. This is mostly
done to reduce the amount of memory needed, as the package le lists take up a consid-
erable amount of repository meta data. As a workaround, FileProvides can be used to tell
the systems which packages contain a le. The File needs to have the full path.

HostArch: HOST_ARCH

This is used for cross builds. It defines the host architecture used for building, while the
scheduler architecture remains the target architecture.

42 Configuration File Syntax

Ignore: PACKAGE_OR_DEPENDENCY

Ignore can be used to break dependencies. This can be useful to reduce the number of
needed packages or to break cyclic dependencies. If a package is specified, all capabilities
provided by the package are ignored.

Ignore: ORIGIN_PACKAGE:PACKAGE_OR_DEPENDENCY

Ignore a dependency coming from ORIGIN_PACKAGE. See the previous section for more
details.

Keep: PACKAGES

To eliminate build cycles the to-be-built package are not installed by default, even when it
is required. Keep can be used to overwrite this behavior. It is usually needed for packages
like make that are used to build itself. Preinstalled packages are automatically kept, as the
package installation program needs to work all the time.

OptFlags: TARGET_ARCH FLAGS (RPM only)

Optflags exports compiler ags to the build by adding lines to rpm's rpmrc le. They will
only have an effect when the spec le is using $RPM_OPT_FLAGS or %{optflags}. The
target architecture may be set to * to affect all architectures.

Order: PACKAG_A:PACKAGE_B

The build script takes care about the installation order if they are defined via dependencies
inside of the packages. However, there might be dependency loops (reported during setup
of the build system) or missing dependencies. The Order statement can be used then to
give a hint where to break the loop.
The package in PACKAGE_A will get installed before the package in PACKAGE_B.

Patterntype: TYPE

Defines the pattern format. Valid values are: none (default), ymp, comps. Multiple types
can be specified.

Prefer: PACKAGES

In case multiple packages satisfy a dependency, the OBS system will complain about that
situation. This is unlike like most package managing tools, which just pick one of the
package. Because one of OBS' goal is to provide reproducible builds, it reports an error
in this case instead of choosing a random package. The Prefer: tag lists packages to be
preferred in case a choice exists. When the package name is prefixed with a dash, this is
treated as a de-prefer.

43 Configuration File Syntax

Prefer: ORIGIN_PACKAGE:PACKAGE

It is possible to define the prefer only when the dependency comes from the specified
originating package.

Preinstall: PACKAGE

This is used to specify packages needed to run the package installation program. These
packages are unpacked so that the native installation program can be used to install the
build environment. Included scripts are not executed during this phase. However, these
packages will be re-installed later on including script execution.

PublishFilter: REGEXP [REGEXP]

Limits the published binary packages in public repositories. Packages that match any REG-
EXP will not be put into the exported repository. There can be only one line of PublishFilter
for historic reasons. However, multiple REGEXP can be defined.

PublishFlags: FLAG

Flags which modify the behaviour during repository generation.

artifacthub:TAG (OBS 2.11 or later)

Publish a specific verified publisher identifier (aka repository id) for artifactub.io.
This can be used to proof to be the publisher (aka maintainer) for containers from
these OBS repositories.

createempty (OBS 2.11 or later)

Create a repository even with no content, but with meta data.

noearlypublish (OBS 2.11 or later)

Only publish build results after entire repository has finished building. This is the
default for classic package (rpm/deb) build types, but not for certain image builds
(like kiwi or products). Without this, build results get published immediately after
the build is finished.

archsync (OBS 2.11 or later)

Publish all architectures at the same time. This means that the publisher is waiting
until the last architecture has finished building.

nofailedpackages (OBS 2.11 or later)

Block publishing if any build result was failed, broken, or unresolvable. That means,
packages can be published for an architecture on which it builds, even if a package
fails to build on another architecture.

44 Configuration File Syntax

This is by default evaluated individually for each architecture. It can be combined
with the archsync ag when publishing should be blocked also when a failure exists
on any architecture.

keepobsolete (OBS 2.11 or later)

The default behaviour of OBS is to remove binaries when a package object gets re-
moved, even when the project is publish disabled (but the package may have been
enabled).
This ag is changing this behaviour to keep binaries in published repositories even
when a package gets removed. As consequence this ag has only an effect on publish
disabled projects.

singleexport (OBS 2.11 or later)

If multiple packages contain different versions of a rpm package, only publish the
one from the rst package. If the project is of the type maintenance_release, this will
be the package with the highest incident number.

withsbom (OBS 2.11 or later)

Enables publishing of SBOM les (SPDX or CycloneDX format) (.cdx.json or
.spdx.json les). Please note that the building of SBOM les usually needs to get
enabled via a BuildFlags switch as well.

withreports (OBS 2.11 or later)

Also publish internal content tracking les (.report les).

ympdist:NAME (OBS 2.11 or later)

Defines the distversion to be used in group element of ymp les. This is used by the
installer to check if the repository is suitable for the installed distribution.

RegistryURL: URL

Define a url for the downloading of containers.

Release: CI_CNT B_CNT (RPM only)

CI_CNT is the number of commits. B_CNT is the number of rebuilds. The default is CI_C-
NT.B_CNT.

Repotype: TYPE[:OPTIONS]

Defines the repository format for published repositories. Read on for permissible values
(repository types). The syntax of the OPTIONS parameter depends on the repository type,
and is also described below.

45 Configuration File Syntax

This is the list of repository types. Multiple values can be combined in the same line,
separated by spaces.

rpm-md

rpm-md repository data is generated as invented by YUM originaly.

suse

suse tag repository data is generated as used until SUSE Linux 10 generation.

hdlist2

Mandriva repository format

debian

Debian repository format

arch

Arch Linux repository format

vagrant

Vagrant image repository format

staticlinks

Additional links to build results excluding version and build numbers are created.

zyppservice

Generate zypp service les, publishing all used repository pathes to the zypp client.

helm

Helm repository metadata

checksumsfile

Checksums le with signatures of repository content

ymp

YaST single install ymp le generation. Zypp services should be used instead.

comps

Generate comps les, Fedora style patterns
This is the list of repository options to modify the way the repository type is generated:

sha256

rpm-md repository data is generated using SHA-256 checksums. This is the default.

sha512

rpm-md repository data is generated using SHA-512 checksums.

46 Configuration File Syntax

legacy

rpm-md repository data is generated using SHA-1 checksums. Considered to be unsafe
and not anymore recommended.

zchunk

rpm-md repository data gets extended with additional zchunk compressed les.

filelists-ext

rpm-md repository provides additional lelist-ext provides

compression-zstd

rpm-md repository data is compressed using zstd instead of gz

deltainfo

rpm-md repository provides additional rpm delta informations for incremental rpm
updates.

splitdebug:SUFFIX

A second repository is generated where all debuginfo and debugsource packages get
moved to. The specified SUFFIX is added to the repository name. For example:

Repotype: rpm-md splitdebug:-debuginfo

rsyncable

rpm-md repository gets recompressed using rsyncable format.

rawsig

checksumsfile repository provides binary signatures instead of ascii signatures

RepoURL: [TYPE@]URL

Define a url for the downloading of repository packages. Supported types are currently
`arch`, `debian`, `hdlist2`, `rpmmd`, `suse`. If the type is not specified, it is guessed from
the build type.

Required: PACKAGE

Specify a package that always is installed for package builds. A change in one of these
packages triggers a new build.

Runscripts: PACKAGES

Defines the scripts of preinstalled packages which needs to be executed directly after the
preinstall phase, but before installing the remaining packages.

47 Configuration File Syntax

Substitute: OLD_DEPENDENCY NEW_DEPENDENCY

It is possible to replace BuildRequires dependencies with other dependencies. This will
have only an effect on directly BuildRequired packages, not on indirectly required pack-
ages.

Support: PACKAGE

Specify a package that always is installed for package builds. Unlike Required:, a change
in one of these packages does not trigger an automatic rebuild.
This is useful for packages that most likely do not influence the build result, for example
make or coreutils.

Target: TARGET_ARCH

Defines the target architecture. This can be used to build for i686 on i586 schedulers for
example. Please note that on rpm based systems just the architecture needs to be specified,
but on debian systems the gnu triplet, for example arm-linux-gnueabihf.

Target: GNU_TRIPLET

Defines the target architecture. This can be used to build for i686 on i586 schedulers for
example. Please note that on rpm based systems just the architecture needs to be specified,
but on debian systems the gnu triplet, for example arm-linux-gnueabihf.

Type: TYPE

Build recipe type. This is the format of the le which provides the build description. This
gets usually autodetected, but in some rare cases it can be set here to either one of these:
spec, dsc, kiwi, livebuild, arch, preinstallimage, mkosi.
Defines the build recipe format. Valid values are currently: none, spec, dsc, arch, kiwi,
preinstallimage. If no type is specified, OBS deduces a type from the binary type.

VMInstall: PACKAGE

Like Preinstall, but these packages get only installed when a virtual machine like Xen
or KVM is used for building. Usually packages like mount are listed here.

4.3 Building with ccache or sccache

The usage of ccache or sccache can be enabled for each package by seting the useccache:PACK-
AGE build ag.

48 Building with ccache or sccache

The ccache package will automatically be installed and configured. The directory /.ccache/
will be configured as cache directory. To configure ccache, the le /.ccache/ccache.conf can be
modified as part of the build process by the $BUILD_USER environment variable.

In some cases, there is no archive for the current package, such as when the package was newly
branched or when binaries were deleted. In these cases, the system will check whether there
is a package of the same name built for the same architecture within one of the repositories
configured in the project's meta configuration. If so, the archive of that package will be used.
The repositories will be searched in the order they are configured in the meta configuration,
starting from the top.

An alternative way to enable caching based on build dependencies is to add "--enable-cache" as
dependency, for example via a Substitute rule:

Substitute: gcc-c++ gcc-c++ --enable-ccache

This will always enable ccache when a direct build depdency to gcc-c++ is required.

It is also possible to set the type, eg:

Substitute: cargo cargo --enable-ccache=sccache

4.4 Macro Definitions in the Build Configuration

You can use rpm macro definitions in the build configuration (prjconf) to improve configurabil-
ity. There are two types of macros that can be defined in the build configuration:

Macros: Macro Definitions. Macros defined after a Macros: line are exported into the
.rpmmacros le of the build root. As such, these macro definitions can be used in a spec
le. The section may be closed via a :Macros line. This is sometimes required to avoid
parse errors, for example when the macro definitions are inside an %if-%endif statement.
The Macros: section is always verbatim: any condition to activate it must be outside of

49 Macro Definitions in the Build Configuration

the Macros: tags. Macros defined in this section are used by Open Build Service for build
dependency resolution and are also available at build time. Any definition here is also
overwriting definitions provided by any packages.

DistMacro. The DistMacro can be used to define a macro for build dependency resolution.
It is intended to be used when a distribution defines relevant macros inside of any of their
packages. These macros are hidden by default to the Open Build Service dependency re-
solver. Use this directive to make it known to Open Build Service. Unlike Macros:, Dist-
Macro won't overwrite any existing and possibly changed definition at build time.

%define Macro Definitions. Macro definitions starting with a %define line are used during
the build configuration parsing only. These definitions are not available inside the build
root or during parsing of build recipes. Typical use cases are macros inside of %if state-
ments inside of the build configuration or macros in any Support, Required or Substitute
line.

4.4.1 Macros for the Build Configuration Only

To specify macros for the building process, use the %define keyword.

For example, if you put this line in the prjconf

%define _with_pulseaudio 1

then the macro %_with_pulseaudio will expand to 1 only inside the build configuration.

4.4.2 Macros Used in Spec Files Only

To define the values of macros used in spec les, `%define` is not used. For this use case, either
enclose the macro definitions between "Macros:"/":Macros" lines, or place them at the end of the
prjconf le. All lines after a line containing the directive "Macros:" up to the end of the config,
or up to a :Macros line, are used when parsing spec les and also made available to the build
by copying them to the .rpmmacros le in the build root.

The macro definition in the project configuration is located at the end and has the following
structure:

EXAMPLE 4.1: STRUCTURE OF A MACRO DEFINITION

Macros:

50 Macros for the Build Configuration Only

 # add your macro definitions
:Macros

Everything that starts with a hash mark (#) is considered a comment.

The macro definition itself are defined without a %define keyword. Start with %macroname, for
example:

%_hardened_build 0

51 Macros Used in Spec Files Only

IV Usage

5 Basic OBS Workflow 53

6 Local Building 63

7 Using Source Services 66

8 SCM/CI Workflow Integration 72

9 Staging Workflow 108

10 Notifications 113

11 Moderation 121

5 Basic OBS Workflow

5.1 Setting Up Your Home Project
This section shows how to set up your home project with the command line tool osc. For more
information about setting up your home project with the Web UI, see Section 1.6, “Setting Up Your

Home Project for the First Time”.

This chapter is based on the following assumptions:

You have an account on an Open Build Service instance. To create an account, use the
Web UI.

You have installed osc as described in Section 3.1, “Installing and Configuring”.

You have configured osc as described in Section 3.3.2, “Using osc for the First Time”.

PROCEDURE 5.1: SETTING UP YOUR HOME PROJECT

1. Get a list of all available build targets of your OBS instance:

geeko > osc ls /

For example, on the openSUSE Build Service, build targets will include distributions such
as openSUSE:Tumbleweed, openSUSE:Leap:VERSION, openSUSE:Tools, openSUSE:Tem-
plates.

2. Configure your build targets with:

geeko > osc meta prj --edit home:obsgeeko

The previous command shows a XML structure like this:

EXAMPLE 5.1: XML STRUCTURE OF BUILD SERVICE METADATA

<project name="home:obsgeeko">
 <title>obsgeeko's Home Project</title>
 <description>A description of the project.</description>
 <person userid="obsgeeko" role="bugowner"/>
 <!-- contains other OBS users -->
 <debuginfo>
 <enable repository="openSUSE_Factory"/>
 </debuginfo>

53 Setting Up Your Home Project

 <!-- add <repository> elements here -->
</project>

3. To add build targets, use the repository element. For example, on openSUSE Build Ser-
vice, you can add the build targets openSUSE Tumbleweed for x86 and x86-64 with:

<repository name="openSUSE_Tumbleweed">
 <path project="openSUSE:Tumbleweed" repository="standard"/>
 <arch>i586</arch>
 <arch>x86_64</arch>
</repository>

4. Add more repository elements as needed. Insert the information from Step 1 into the
project attribute.
On openSUSE Build Service, you can normally use the attribute repository with the value
standard. For example, to add openSUSE Leap as a build target, create an entry like:

<repository name="openSUSE_Leap_42.3">
 <path project="openSUSE:Leap:42.3" repository="standard"/>
 <arch>i586</arch>
 <arch>x86_64</arch>
</repository>

5. Save the le (or leave it untouched).
osc will check if the new configuration is valid XML. If the le is valid, osc will save it.
Otherwise, it will show an error and prompt you whether to Try again?. In this case, press
n . Your changes will be lost and you will need to start from Step 2 again.

After a while, the defined build targets show up in your home project.

5.2 Creating a New Package

This section covers how to create packages for an arbitrary software project, which we will refer
to here as the “upstream project”. We assume that this project contains source code which you
want to package for one or more SUSE (openSUSE) distributions. We assume the setup of your
home project in your OBS instance is already done. If not, refer to Section 5.1, “Setting Up Your

Home Project”.

54 Creating a New Package

To create a package from the upstream project, do the following:

PROCEDURE 5.2: GENERAL PROCEDURE TO BUILD A RPM PACKAGE

1. Open a shell. Choose or create a directory on your system in a partition that has enough
space to hold the package sources.

2. Prepare your working directory. These steps only have to be performed once:

a. Check out your home project:

geeko > osc checkout home:obsgeeko

This will create home:obsgeeko in the current directory.

b. Create a new package inside your local working directory:

geeko > cd home:obsgeeko
geeko > osc mkpac YOUR_PROJECT

3. Download the source of the upstream project and save it in home:obs-

geeko/YOUR_PROJECT.

4. Create a spec le which contains metadata and build instructions. For more information
about spec les, see https://rpm-packaging-guide.github.io .

5. Create a new changelog and add your changes:

a. To create a new changelog le or to update an existing changelog le with osc, use:

geeko > osc vc

The command will open an editor with the following content:

Fri Aug 23 08:42:42 UTC 2017 - geeko@example.com

b. Enter your changes in the editor.

55 Creating a New Package

https://rpm-packaging-guide.github.io

Usually, changelog entries contain a high-level overview like:

Version Updates. Provide a general overview of new features or changes in
behavior of the package.

Bug and Security Fixes. If a bug was xed, mention the bug number. Most
projects have policies or conventions for abbreviating bug numbers, so there
is no need to add a long URL.
For example, in openSUSE Build Service, boo# is used for bugs on https://bugzil-

la.opensuse.org and fate# is used for features on https://fate.opensuse.org .

Incompatible Changes. Mention incompatible changes, such as API changes,
that affect users or other developers creating extensions of your package.

Distribution-Related Changes. Mention any changes in the package structure,
package names, and additions or removals of patch les or “hacks”.

For more information about changelogs, see https://en.opensuse.org/openSUSE:Cre-

ating_a_changes_file_(RPM) .

6. Add all the les to your working directory:

geeko > osc add *.spec *.changes *.tar.gz

7. Build the package for a specific distribution and architecture, for example, openSUSE
Tumbleweed for x86-64:

geeko > osc build --local-package openSUSE_Tumbleweed x86_64 *.spec

If you encounter problems, see Section 5.3, “Investigating the Local Build Process”.

8. Check if your build was successful. If everything was ne, commit the les to your package
to your home project on OBS:

geeko > osc commit

To delete a le in your working directory, merely deleting it from the local filesystem (rm FILE)
is not sufficient, since osc, like any other Source Code Control System, will just complain that
the le is missing. If you really want to delete a le, use the command:

geeko > osc delete FILE

56 Creating a New Package

https://bugzilla.opensuse.org
https://bugzilla.opensuse.org
https://fate.opensuse.org
https://en.opensuse.org/openSUSE:Creating_a_changes_file_(RPM)
https://en.opensuse.org/openSUSE:Creating_a_changes_file_(RPM)

While there is no dedicated osc to "move" (rename) a le, the desired end result can be obtained
using the following procedure:

PROCEDURE 5.3: PROCEDURE FOR MOVING A FILE WITHIN A LOCALLY CHECKED-OUT OBS PACKAGE

1. geeko > cp ORIGINAL_FILE NEW_FILE

2. geeko > osc delete ORIGINAL_FILE

3. geeko > osc add NEW_FILE

4. And, finally:

geeko > osc status

to verify that the end result is as intended.

5.3 Investigating the Local Build Process
It is hard to describe a general procedure when you encounter a build error. Most build errors
are very specific to the package being built. However, there are generic tools that often help:

Section 5.3.1, “Build Log”

Section 5.3.2, “Local Build Root Directory”

5.3.1 Build Log

Each build produces a log le on OBS. This log le can be viewed by the buildlog (or bl)
subcommand. It needs a build target which is the distribution and the architecture.

For example, to view the build log of your current project for openSUSE Tumbleweed on a
x86-64 architecture, use: use:

geeko > osc buildlog openSUSE_Tumbleweed x86_64

However, this command will print the complete build log which could be difficult to spot the
errors. Use the buildlogtail subcommand to show only the end of the log le:

geeko > osc buildlogtail openSUSE_Tumbleweed x86_64

57 Investigating the Local Build Process

Additionally, the osc creates some build log les in the build directory /var/tmp/build-root/:

.build.log

Contains the log.

.build.command

Contains the command which is used to build the package. For RPM-like systems it is
rpmbuild -ba PACKAGE.spec.

.build.packages

Contains the path to all object les.

5.3.2 Local Build Root Directory

If you build a package locally and you get a build error, investigate the problems in the build root
directory directly. This is sometimes easier and more effective than only looking at the build log.

By default, the directory /var/tmp/build-root/ is used as the build root. This is defined in the
configuration le ~/.oscrc using the key build-root.

Each combination of distribution and architecture has its own build root. To change into the
build root for openSUSE Tumbleweed on the x86-64 architecture, use the following command:

geeko > osc chroot openSUSE_Tumbleweed x86_64

When prompted, enter the root password.

Your shell will then change to the directory /home/abuild belonging to the user abuild in
group abuild.

The build root contains the following structure:

EXAMPLE 5.2: DIRECTORY STRUCTURE OF A BUILD ROOT (/var/tmp/build-root/)

/home/abuild/
└── rpmbuild
 ├── BUILD 1

 ├── BUILDROOT 2

 ├── OTHER 3

 ├── RPMS 4

 │ ├── i386
 │ ├── noarch
 │ └── x86_64

58 Local Build Root Directory

 ├── SOURCES 5

 ├── SPECS 6

 └── SRPMS 7

1 Contains directory named after the package name. In spec les, the name of the package
directory is referenced using the %buildroot macro.

2 If the build process was unable to create a package, this directory contains all les and
directories which are installed in the target system through the %install section of the
spec le.
If the package has been successfully built, this directory will be emptied.

3 Usually contains the le rpmlint.log.

4 If the build was successful, stores binary RPMs into subdirectories of architecture (for ex-
ample, noarch or x86_64).

5 All source les from the working copy will be copied here.

6

7 Stores source RPMs into this directory.

5.4 Dependency Handling in Your Projects
As described in more detail in Chapter 1, Beginnerʼs Guide, both types of package dependencies
(build and runtime) are specified in the build recipe, and exactly how this is done is beyond the
scope of this Open Build Service documentation.

The Open Build Service provides the following methods to handle both types of dependencies
(build and runtime) in your projects:

Section 5.4.1, “Associating Other Repositories with Your Repository” (layering)

Section 5.4.2, “Reusing Packages in Your Project” (linking and aggregating)

5.4.1 Associating Other Repositories with Your Repository

There is no need to duplicate the work of others. If you need a specific package which is available
in another repository, you can reference this repository in your project metadata. This is called
layering.

When a package is needed, it can be installed from another other repository (see the note below).

59 Dependency Handling in Your Projects

To add another repository that can be used as build or installation requirements, do the follow-
ing:

1. Open a terminal.

2. Edit the project metadata:

geeko > osc meta prj --edit home:obsgeeko

3. Search for repository elements. For example, to allow usage packages from devel:lan-
guages:python in a openSUSE Tumbleweed project, extend the repository element
with:

<repository name="openSUSE_Tumbleweed">
 <path project="devel:languages:python" repository="openSUSE_Factory"/>
 <path project="openSUSE:Factory" repository="standard"/>
 <arch>x86_64</arch>
</repository>

Note: Order Is Important
The order of the path elements is important: path elements are searched from top
to bottom.

If a package cannot be found in the rst repository, the second repository is consid-
ered. When the rst suitable package is found, it is installed and the build prepa-
ration can continue.

For practical reasons, additional repositories should be added before the standard
repositories of the specified distribution.

4. Add more path elements under the same repository element.

5. If necessary, repeat Step 3 and Step 4 to add path elements to repository elements of
other distributions or releases.

5.4.2 Reusing Packages in Your Project

To reuse existing packages in your package repository, OBS offers two methods: “aggregating”
and “linking”.

60 Reusing Packages in Your Project

5.4.2.1 Aggregating a Package

An “aggregate” package is a pointer to an OBS package. Such package and the result of it are
referenced int another project. “Aggregating” is used in the following situations:

No changes in the source code are needed.

Packages that are needed for building are only available in a different project.

Build results (binaries) of the aggregated package are copied into the target's package
repository.

To avoid package rebuilds.

The general syntax of the aggregatepac command is:

geeko > osc aggregatepac SOURCEPRJ SOURCEPAC DESTPRJ

For example, to aggregate the package python-lxml from devel:language:python into your
home project, use the following command:

geeko > osc aggregatepac devel:language:python python-lxml home:obsgeeko

The next time you update your working directory, the python-lxml contains the _aggregate
le.

5.4.2.2 Linking a Package

A linked package is a clone of another package with additional modifications. Linking is used
in the following situations:

The source code needs changes, but the source either cannot be changed in the original
package or doing so is impractical or inconvenient to change the source.

To separate the original source from own patches.

The general syntax of the linkpac command is:

geeko > osc linkpac SOURCEPRJ SOURCEPAC DESTPRJ

For example, to link the package python-lxml from devel:language:python into your home
project, use the following command:

geeko > osc linkpac devel:language:python python-lxml home:obsgeeko

61 Reusing Packages in Your Project

In contrast to aggregating, the checkout contains all the les from the linked repository. To
reduce it to a single le (like with aggregating), “unexpand” it in the working directory like this:

geeko > osc up --unexpand-link
Unexpanding to rev 1
A _link
D pytest-3.2.1.tar.gz
D python-pytest-doc.changes
D python-pytest-doc.spec
D python-pytest.changes
D python-pytest.spec
At revision 1.

This gives you a _link le similar to the _aggregate le. You can use the --expand-link
option in the up subcommand to revert to the previous state.

5.5 Manage Group
Users with Maintainer rights can add users to their group and remove users from it. They can
also give other users Maintainer rights.

osc api -d "<group><title><group-title></title><email><group-email></email><maintainer
 userid="<user-name>"/><person><person userid="<user_name>"/></person></group>' -X PUT "/
group/<group-title>"

62 Manage Group

6 Local Building

Every build that happens on the server can also be executed locally in the same en-
vironment using the osc tool. All you need is to check out the source code and run
osc build to run the build recipe. The following explains it for RPM format, but it
works for any. osc will download needed binaries and execute the local build.

6.1 Generic Local Build Options
Frequently, local builds are undertaken on local checkouts of source packages that already reside
on an OBS server - for example, to test changes before commiting them to the server.

It is also possible to trigger a local build in an arbitrary local directory containing sources,
without any corresponding source package on an OBS server. (However, osc will still need a
connection to the server in order to download build dependencies.) The following text describes
what the source directory should contain, at a minimum.

Independent of the build format you need at least one source le as build description. The le
name and structure is format specific. You can nd some supported formats described below.
To build your build format, you need:

the original source archive. Instead of that the package may contain a _service le which
describes how to create it, for example by downloading it or building it from a SCM repos-
itory. It can also be used to create the build description le. Find more details about it in
the source service chapter.

optional patches which changes the original source code to x problems regarding security,
the build process, or other issues

other les which do not fall into one of the previous categories

In the typical case of source packages locally checked out from an OBS server, this is already
the case. To build an existing package, the general procedure is as follows:

1. If you have not done so yet, set up your project as shown in Section 5.1, “Setting Up Your

Home Project”.

2. In the terminal, choose or create a directory on a local partition that has enough space
to hold the package sources.

63 Generic Local Build Options

3. Check out the project that contains the package:

geeko > osc checkout PROJECT PACKAGE

This creates a PROJECT/PACKAGE directory in the current directory.

4. Change into the directory:

geeko > cd PROJECT/PACKAGE

5. The simplest way to run a build is just to call the osc build command. osc will try to
detect your installed OS and build for it if possible.

geeko > osc build

However, you may also manually specify the build target. For example openSUSE Tum-
bleweed for x86_64, you want to create the RPM package:

geeko > osc build openSUSE_Tumbleweed x86_64

6. It will download the required dependencies and execute the build script. Therefore it needs
to ask for root permissions in most cases.

Successful Build

[15s] RPMLINT report:
[15s] ===============
[16s] 2 packages and 0 specfiles checked; 0 errors, 0 warnings.
[16s]
[16s]
[16s] venus finished "build PACKAGE.spec" at Fri Sep 1 11:54:31 UTC 2017.
[16s]

/var/tmp/build-root/openSUSE_Tumbleweed-x86_64/home/abuild/rpmbuild/
SRPMS/PACKAGE-VERSION-0.src.rpm

/var/tmp/build-root/openSUSE_Tumbleweed-x86_64/home/abuild/rpmbuild/RPMS/
noarch/PACKAGE-VERSION-0.noarch.rpm

Unsuccessful Build

[8s] venus failed "build PACKAGE.spec" at Fri Sep 1 11:58:55 UTC 2017.
[8s]

The buildroot was: /var/tmp/build-root/openSUSE_Tumbleweed-x86_64

64 Generic Local Build Options

A successful build of a spec le ends with the creation of the RPM and SRPM les.

7. For a detailed log, see the le /var/tmp/build-root/openSUSE_Tumble-

weed-x86_64/.build.log.

6.2 Advanced Local Build Environment Handling
The default build environment for local builds is usually chroot. While this is simplest environ-
ment and is therefore easy and fast to handle, it has also a number of shortcomings. For one
it is not safe against attacks, so you must not build sources or using build dependencies from
a resource which you do not trust. Furthermore the environment is not fully isolated and runs
on the kernel the target distribution runs. This means esp image builds and kernel/hardware
specific builds may fail or won't produce the same result. The server side is usually set to inside
of KVM therefore to avoid this.

You can also build locally in KVM (if your hardware supports it) by running

geeko > osc build --vm-type=kvm --vm-memory=MB

Another important virtualization mode is qemu. This can be used to build for a foreign
hardware architecture even when the distribution is not prepared for the qemu user land
emulator. However, this qemu system emulator approach will be much slower.

geeko > osc build --vm-type=qemu --vm-memory=MB REPOSITORY ARCHITECTURE

You may want to jump inside of a the build environment for debugging purposes. This can
be done via the following command:

geeko > osc shell --vm-type=VM

To remove the build environment, use:

geeko > osc wipe --vm-type=VM

65 Advanced Local Build Environment Handling

7 Using Source Services

7.1 About Source Services
Source Services are tools to validate, generate or modify sources in a trustable way. They are
designed as smallest possible tools and can be combined following the powerful idea of the
classic UNIX design.

Source services allow:

Server-side generated les are easy to identify and are not modifiable by the user. This way,
other users can trust them to be generated in the documented way without modifications.

Generated les never create merge conflicts.

Generated les are a separate commit to the user change.

Source services are runnable at any time without user commit.

Source services are runnable on server and client side in the same way.

Source services are safe. A source checkout and service run never harms the system of a
user.

Source services avoid unnecessary commits. This means there are no time-dependent
changes. In case the package already contains the same le, the newly generated le is
dropped.

Source services running local or inside the build environment can get created, added and
used by everybody.

Source services running in default or server side mode must be installed by the adminis-
trator of the OBS server.

The use of a source service can be defined per package or project wide.

For using source services you need (refer to Example 7.1, “Structure of a _service File”):

An XML le named _service.

A root element services.

A service element which uses the specific service with optional parameters.

66 About Source Services

EXAMPLE 7.1: STRUCTURE OF A _service FILE

<services> 1

 <service name="MY_SCRIPT" 2 mode="MODE" 3 >
 <param name="PARAMETER1">PARAMETER1_VALUE</param> 4

 </service>
</services>

1 The root element of a _service le.

2 The service name. The service is a script that is stored in the /usr/lib/obs/service di-
rectory.

3 Mode of the service, see Section 7.2, “Modes of Source Services”.

4 One or more parameters which are passed to the script defined in 2 .

The example above will execute the script:

/usr/lib/obs/service/MY_SCRIPT --PARAMETER1 PARAMETER1_VALUE --outdir DIR

7.2 Modes of Source Services
Each source service can be used in a mode defining when it should run and how to use the
result. This can be done per package or globally for an entire project.

TABLE 7.1: SOURCE SERVICE MODES

Mode Runs remotely Runs locally Added File Handling

Default After each commit Before local build Generated les are prefixed with _ser-
vice:

trylo-

cal

Yes Yes Changes are merged into commit

localon-

ly

No Yes Changes are merged into commit

serveron-

ly

Yes No Generated les are prefixed with _ser-
vice: This can be useful, when the ser-
vice is not available or can not work on
developer workstations.

67 Modes of Source Services

Mode Runs remotely Runs locally Added File Handling

build-

time

During each build
before calling the
build tool (for
example, rpm-
build)aThe service
package must be
available for build-
ing.

manual No Only via explicit
CLI call

Exists since OBS 2.11

dis-

abled

No Only via explicit
CLI call

a A side effect is that the service package is becoming a build dependency and must be available.

Default Mode

The default mode of a service is to always run after each commit on the server side and
locally before every local build.

trylocal Mode

This mode is running the service locally. The result is committed as standard les and not
named with a _service: prefix. Additionally, the service runs on the server by default.
Usually the service should detect that the result is the same and skip the generated les.
In case they differ, they are generated and added on the server.

localonly Mode

This mode is running the service locally. The result gets committed as standard les and
not named with _service: prefix. The service is never running on the server side. It is
also not possible to trigger it manually.

serveronly Mode

The serveronly mode is running the service on the server only. This can be useful, when
the service is not available or can not work on developer workstations.

68 Modes of Source Services

buildtime Mode

The service is running inside of the build job, both for local and server side builds. A side
effect is that the service package is becoming a build dependency and must be available.
Every user can provide and use a service this way in their projects. The generated sources
are not part of the source repository, but part of the generated source packages. Note that
services requiring external network access are likely to fail in this mode, because such
access is not available if the build workers are running in secure mode (as is always the
case at https://build.opensuse.org).

manual Mode,

disabled Mode

The manual mode is neither running the service locally nor on the server side by default.
It can be used to temporarily disable the service but keeping the definition as part of the
service definition. Or it can be used to define the way how to generate the sources and
doing so by manually calling osc service rundisabled. The result will get committed as
standard les again. NOTE: it did only exist as "disabled" before OBS 2.11, but "manual" is
the better matching alias name for its usage. The osc client may do have different behaviour
in future between manual and disabled.

7.3 Defining Source Services for Validation

Source services can be used to validate sources. This can be defined at different levels:

Per Package. Useful when the packager wants to validate whether the downloaded sources
are really from the original maintainer.

Per Project. Useful for applying project-wide policies which cannot be skipped for any
package.

You can validate sources using either of two methods:

By comparing checksums and metadata of the les in your repository with checksums and
metadata as recorded by the maintainer.

Alternatively, you can download the sources from a trusted location again and verify that
they did not change.

69 Defining Source Services for Validation

https://build.opensuse.org

7.4 Creating Source Service Definitions
Source services are defined in the _service le and are either part of the package sources or used
project-wide. Project-wide services are stored under the _project package in le _service.

The _service le contains a list of services which get called in the listed order. Each service
can define a list of parameters and a mode. The project wide services get called after the per
package defined services.

The _service le is in XML format and looks like this:

<services>
 <service name="download_files" mode="trylocal" />
 <service name="verify_file">
 <param name="file">krabber-1.0.tar.gz</param>
 <param name="verifier">sha256</param>
 <param
 name="checksum">7f535a96a834b31ba2201a90c4d365990785dead92be02d4cf846713be938b78</param>
 </service>
</services>

With the example above, the services above are executed in the following order:

1. Downloads the le via the download_files service using the URL from the Spec le. When
using osc, the downloaded le gets committed as part of the commit.

2. Compares the downloaded le (krabber-1.0.tar.gz) against the SHA256 checksum.

7.5 Removing a Source Service
Sometimes it is useful to continue working on generated les manually. In this situation the
_service le needs to be dropped, but all generated les need to be committed as standard
les. The OBS provides the mergeservice command for this. It can also be used via osc by
calling osc service merge.

7.6 Trigger a service run via a webhook
You may want to update sources in Open Build Service whenever they change in a SCM system.
You can create a token which allows to trigger a specific package update and use it via a web-
hook. It is recommended to create a token for a specific package and not a wildcard token. Read
Chapter 36, Authorization to learn how to create a token.

70 Creating Source Service Definitions

7.6.1 Creating a webhook on GitLab

Go to your repository settings page in your gitlab instance. Select Integrations there. All what
you need to ll is the URL

https://YOUR_INSTANCE/trigger/runservice

and the Secret Token. Hit the Add webhook button and you are good. You may specify project
and package via CGI parameters in case you created a wildcard token:

https://YOUR_INSTANCE/trigger/runservice?project=PROJECT&package=PACKAGE

7.6.2 Creating a webhook on GitHub

Go to your repository settings page of your repository on github.com. Select Webhooks settings
and create a hook via Add Webhook button. Define the payload URL as

https://YOUR_INSTANCE/trigger/webhook?id=$TOKEN_ID

and ll the secret box with your token string. Please note that github requires that you must
also define the token id as part of the webhook string. All other settings can stay untouched and
just hit the Add webhook button.

71 Creating a webhook on GitLab

8 SCM/CI Workflow Integration

8.1 SCM/CI Workflow Integration Setup

8.1.1 Introduction

With this integration, you can take advantage of source code management (SCM) systems like
GitHub, GitLab or Gitea to manage your packages sources. Then, you can integrate those sources
with OBS to run different workflows, for instance, to build a package and report back the result
to the SCM.

In the following sections, you will nd the instructions to set up the integration between SCMs
and OBS.

This chapter talks in GitHub jargon to simplify the text. As constantly mentioning all the names
for the same things, e.g. Pull Requests/Merge Requests, is tiresome and confusing. However, every
aspect has its correspondence in GitLab and Gitea. Refer to Section 8.1.10, “Equivalence Table” for
clarification of terminology.

8.1.2 Prerequisites

Before you start, you need to

have a repository on GitHub.

have a package on an OBS Instance.

8.1.3 Supported SCMs

We support the GitHub.com and GitLab.com instances.

We also support Self-Hosted instances from GitHub, GitLab and Gitea. As long as the network
connectivity works, OBS will be able to interact with that SCM.

8.1.4 Token Authentication

OBS and GitHub need to talk to each other. Tokens are the way to make this happen.

72 SCM/CI Workflow Integration Setup

8.1.4.1 How to Authenticate OBS with SCMs

You have to create a GitHub personal access token. OBS is going to use it to talk to GitHub
on your behalf.

The personal access token needs, at least, the following scopes assigned:

GitHub Classic Token: repo

GitHub Fine-Grained Token:

Contents: Read only

Commit statuses: Read and write

GitLab: api

Gitea: repo

Check GitHub’s (https://docs.github.com/en/github/authenticating-to-github/creating-a-person-

al-access-token) , GitLab's (https://docs.gitlab.com/ee/user/profile/personal_access_tokens.htm-

l#creating-a-personal-access-token) and Gitea's (https://docs.gitea.io/en-us/api-usage/#generat-

ing-and-listing-api-tokens) documentation to learn how.

8.1.4.2 How to Authenticate SCMs with OBS

You have to create an OBS workflow token. Github is going to use it to trigger actions on OBS
on your behalf.

8.1.4.2.1 Create Token

You can create the OBS token via WebUI in Profile > Manage Your Tokens.

You can also use osc for this:

osc token --create --operation workflow --scm-token long_ascii_salad

Example of response:

<status code="ok">
 <summary>Ok</summary>
 <data name="token">long_ascii_salad</data>
 <data name="id">12345</data>

73 Token Authentication

https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html#creating-a-personal-access-token
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html#creating-a-personal-access-token
https://docs.gitea.io/en-us/api-usage/#generating-and-listing-api-tokens
https://docs.gitea.io/en-us/api-usage/#generating-and-listing-api-tokens

</status>

Make sure you replace long_ascii_salad with your real GitHub personal access token created in
Section 8.1.4.1, “How to Authenticate OBS with SCMs”

Warning
Don't forget to keep your token secret to prevent someone else from triggering operations
in your name!

8.1.4.2.2 Regenerating Secrets and Deleting Tokens

If you suspect your OBS token secret was leaked, you can regenerate the secret or delete the
whole token to secure it again:

a) Regenerate the token secret

Through the WebUI in Profile > Manage Your Tokens > Edit > Regenerate Token.

b) Delete the token

You can always delete your token via WebUI, in Profile > Manage Your Tokens, or with these
commands:

osc token # list all your tokens

osc token --delete $token_id # remove the token with the given id

Then you can create a new one as explained in Section 8.1.4.2, “How to Authenticate SCMs with OBS”

and replace it wherever you use it.

8.1.5 Webhooks

Once OBS and GitHub are allowed to speak to each other, they can start talking via webhooks.

8.1.5.1 SCM Events

On a GitHub repository, events are happening all the time: a pull request is created, somebody
pushes a commit, a pull request is merged etc. When you set up a webhook on GitHub, you
can specify which events you are interested in. Only when those events happen, the webhook
will be sent to OBS.

74 Webhooks

This is the list of SCM events supported by the existing workflows in OBS:

Pull requests and Merge requests

Pushes

Tag Pushes

In addition, the Pull request events contain a eld called action. OBS supports a different subset
of Pull request event actions, depending on the SCM. For GitHub and Gitea, the following set
of actions is supported:

closed

opened

reopened

synchronize

synchronized

For Gitlab's Merge request events, the following actions are supported:

close

merge

open

reopen

update

Refer to the Equivalence Table for more details or read more about
GitHub events (https://docs.github.com/en/developers/webhooks-and-events/webhooks/web-

hook-events-and-payloads) , GitLab events (https://docs.gitlab.com/ee/user/project/integra-

tions/webhook_events.html) and Gitea events (https://docs.gitea.io/en-us/webhooks/) .

8.1.5.2 How to Set Up a Webhook on Github

Go to the project you want to set the integration on, then under Settings > Webhooks.

75 Webhooks

https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads
https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads
https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html
https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html
https://docs.gitea.io/en-us/webhooks/

FIGURE 8.1: WEBHOOKS ON GITHUB.

You have to ll in the form with:

Payload URL: https://build.opensuse.org/trigger/workflow?id=12345. Replace 12345 with
the OBS token numerical ID previously obtained.

Content type: application/json.

Secret: uvwxyz. Replace uvwxyz with the OBS token secret string previously obtained.

Enable SSL verification.

Let me select individual events: Pull requests, Pushes.

8.1.5.3 How to Set Up a Webhook on GitLab

Go to the project you want to set the integration on, under the Settings > Webhooks.

76 Webhooks

FIGURE 8.2: WEBHOOKS ON GITLAB.

Fill in the following elds:

URL: https://build.opensuse.org/trigger/workflow?id=12345. Replace 12345 with the OBS
token numerical ID previously obtained.

Secret Token: uvwxyz Replace uvwxyz with the OBS token secret string previously ob-
tained.

Trigger: Merge request events, Push events, Tag push events.

8.1.5.4 How to Set Up a Webhook on Gitea

Go to the repository you want to set the integration on, then under Settings > Webhooks.

77 Webhooks

FIGURE 8.3: WEBHOOKS ON GITEA.

You have to ll in the form with:

Target URL: https://build.opensuse.org/trigger/workflow?id=12345. Replace 12345 with
the OBS token numerical ID previously obtained.

HTTP Method: POST.

POST Content Type: application/json.

Secret: uvwxyz. Replace uvwxyz with the OBS token secret string previously obtained.

Custom events...: Pull Request, Push.

8.1.6 OBS Workflows

A GitHub event occurs and OBS receives the corresponding webhook. Now is when the OBS
workflows come into play.

A workflow is nothing else than a sequence of steps you want to perform in OBS. You can
describe the steps to run in a YAML configuration le.

To do so, in the root directory of your GitHub repository, create a directory .obs which contains
a le called workflows.yml. If you don't want to use that directory, you should check Configuration

File Location out.

The content of .obs/workflows.yml could look like this:

rebuild_master:

78 OBS Workflows

 steps:
 - rebuild_package:
 project: home:Admin
 package: ctris
 filters:
 event: push

You can also define multiple workflows, each one needs an unique name. The following example
contains two workflows: main_workflow and rebuild_master.

main_workflow:
 steps:
 - branch_package:
 source_project: OBS:Server:Unstable
 source_package: obs-server
 target_project: OBS:Server:Unstable:CI
 filters:
 event: pull_request
rebuild_master:
 steps:
 - rebuild_package:
 project: home:Admin
 package: ctris
 filters:
 event: push
 branches:
 only:
 - master

8.1.6.1 Configuration File Location

By default the configuration le is fetched from the repository's target branch under .obs/work-
flows.yml. You can of course adjust that by editing the token configuration in OBS. The following
options are available:

Path for Workflows Configuration File allows you to adjust the path to be different than the
default .obs/workflows.yml in the code repository.

URL to Workflows Configuration File allows you to use a le that is hosted in a different
place than the code repository.

79 OBS Workflows

FIGURE 8.4: CONFIGURATION FILE LOCATION OPTIONS IN EDIT TOKEN

8.1.6.2 OBS Workflow Steps

We support the following steps (the keys used in the configuration le appears surrounded with
parenthesis):

Branch a package in a project (branch_package).

Submit a request (submit_request).

Link a package to a project (link_package).

Configure repositories/architectures for a project (configure_repositories)

Rebuild a package (rebuild_package)

Set ags for projects, packages, repositories or architectures (set_ags)

Trigger services of a package (trigger_services)

Warning
The user the token belongs to needs to have permissions to branch a package, link pack-
ages, configure repositories/architectures, rebuild packages and trigger services of a pack-
age.

80 OBS Workflows

8.1.6.2.1 Branch a Package in a Project

Given we have a source package called ctris coming from a source project called games, and
a target project called home:jane, this step will branch that package onto the target project,
keeping in mind that:

With a pull request event, it will go to e.g.: home:jane:github:jane:ctris:PR-1/ctris. PR-1 being
the pull request number.

With a push event for commits, it will go to e.g.: home:jane/ctris-66f2acfbd-
ed89a19935ee6d481b7cf2ab95427f6. 66f2acfbded89a19935ee6d481b7cf2ab95427f6 being
the SHA of the latest commit that triggered the event.

With a push event for tags, it will go to e.g.: home:jane/ctris-release_1. release_1 being the
name of the tag that triggered the event.

This is an example of a configuration le with a branch package step:

workflow:
 steps:
 - branch_package:
 source_project: games
 source_package: ctris
 target_project: home:jane

Branching a package into a project that did not exist before, for instance for a pull request event,
will branch the package and set up the same repositories that the source project has. If you
want to skip this and set up repositories yourself, with the configure_repositories step, set the
add_repositories key to anything else than enabled.

8.1.6.2.2 Submit a Request

The submit request step is the equivalent of the osc submitrequest command.

The requirements to run a submit request step are:

There has to be a source package.

There has to be some changes between the source package and the target package.

81 OBS Workflows

After the previous requirements are met, keep in mind that:

With a pull request open event, push event, or tag_push event, it will create the submit
request.

When more commits are added to the pull request, it will supersede the request it previ-
ously created with a new request.

With a pull_request closed event, it will revoke the request.

This is an example of a configuration le with a submit request step:

workflow:
 steps:
 - submit_request:
 source_project: games
 source_package: ctris
 target_project: home:jane_doe
 target_package: ctris # (optional, uses source_package if
 not set)
 description: 'Check out this cool package' # (optional, uses the commit/pull
 request message if not set)

8.1.6.2.3 Link a Package to a Project

The link package step is the equivalent of osc linkpac command.

Given a source project called devel, a source package called gcc, a target project called home:jane,
and a GitHub fork called jane/gcc the step will link the package devel/gcc against:

home:jane:github:jane:gcc:PR-1/gcc for a pull request event. PR-1 being the pull request
number.

home:jane/gcc-fae00a0ac0e5687343a60ae02bf60352002ab9aa with a push event for com-
mits. fae00a0ac0e5687343a60ae02bf60352002ab9aa being the SHA of the latest commit
that triggered the event.

home:jane/gcc-release_1 with a push event for tags. release_1 being the name of the tag that
triggered the event.

This is an example of a configuration le with a link package step:

workflow:
 steps:
 - link_package:

82 OBS Workflows

 source_project: devel
 source_package: gcc
 target_project: home:jane

Note
If you rely on Using Source Services to run, for instance to pick up changes from a PR with
the obs_scm service, you can't make use of this step. Package links do not run the services.
Use the branch_package step instead.

8.1.6.2.4 Configure Repositories/Architectures for a Project

Given a project called home:jane, the step will configure a number of repositories and architec-
tures for the following target projects:

home:jane:jane_github:repo123:PR-1 when the event is a pull request. jane_github being the
username/organization which owns the SCM repository. repo123 being the name of the
SCM repository. PR-1 being the pull request number.

home:jane when the event is a commit or tag push.

Each repository needs:

a name, e.g.: openSUSE_Tumbleweed

a list of paths, each having a target project (e.g: openSUSE:Factory) and target repository
(e.g: snapshot)

a list of architectures to be defined for each repository. e.g.: x86_64 and i586

This is an example of a configuration le with a configure repositories step:

workflow:
 steps:
 - configure_repositories:
 project: home:jane
 repositories:
 - name: openSUSE_Tumbleweed
 paths:
 - target_project: openSUSE:Factory
 target_repository: snapshot
 - target_project: openSUSE:Tumbleweed
 target_repository: standard
 architectures:

83 OBS Workflows

 - x86_64
 - i586
 - name: openSUSE_Leap_15.2
 paths:
 - target_project: openSUSE:Leap:15.2
 target_repository: standard
 architectures:
 - x86_64

Bear in mind that this step would overwrite any repository path on 'home:jane's 'openSUSE_Tum-
bleweed' repository that matched 'openSUSE:Factory/snapshot' or 'openSUSE:Tumble-
weed/standard'. Meaning any repository configuration or architecture you had previously not
present in the step would be gone.

Repositories whose names are not listed in this configuration would be left untouched.

8.1.6.2.5 Rebuild a Package

Given a project called home:Admin and a package ctris, the step will rebuild the package home:Ad-
min/ctris.

This is an example of a configuration le with a rebuild package step.

workflow:
 steps:
 - rebuild_package:
 project: home:Admin
 package: ctris

8.1.6.2.6 Set Flags for Projects, Packages, Repositories or Architectures

There are OBS-wide defaults for each ag type. This step is only necessary if you want to diverge
from the defaults (see Valid flag types).

Providing the type build, the status enable and the project home:Admin, OBS will enable all builds:

for the home:Admin:$MY_SCM_ORG:$MY_SCM_PROJECT:PR-$MY_PR_NUMBER project
when the webhook event is a pull request.

for the home:Admin project when the webhook event is a push.

Providing multiple ags is supported as noted in the configuration le below:

workflow:
 steps:

84 OBS Workflows

 - set_flags:
 flags:
 - type: build
 status: enable
 project: home:Admin
 - type: publish
 status: disable
 project: home:Admin

The type, status and project keys are always required. Optional keys are also available to limit
the ag to a package, repository or architecture.

The project, package, repository and architecture should exist before a ag is set for them. They
can be created in steps preceding a set_ags step, although this isn't necessary as long as they
exist.

The type has to be one of the following values:

VALID FLAG TYPES

lock (default status disable)

build (default status enable)

publish (default status enable)

debuginfo (default status disable)

useforbuild (default status enable)

binarydownload (default status enable)

sourceaccess (default status enable)

access (default status enable)

The status is either disable or enable.

Take into consideration, that if the set_ags step doesn't define a ag specifically, a ag which
had been set previously will preserve its value.

So with the configuration le provided below and a pull request event, builds of the home:Ad-
min:$MY_SCM_ORG:$MY_SCM_PROJECT:PR-$MY_PR_NUMBER/ctris package will be disabled for
the openSUSE_Tumbleweed repository and x86_64 architecture. For a push event, it's exactly the
same, except for the package which is home:Admin/ctris-$MY_COMMIT_SHA_OR_TAG_NAME.

workflow:
 steps:
 - set_flags:

85 OBS Workflows

 flags:
 - type: build
 status: disable
 project: home:Admin
 package: ctris
 repository: openSUSE_Tumbleweed
 architecture: x86_64

8.1.6.2.7 Trigger Services of a Package

Given a project called home:Admin and a package ctris, the step will trigger services of the
package home:Admin/ctris.

Be sure to have a _service (https://openbuildservice.org/help/manuals/obs-user-guide/cha.ob-

s.source_service.html) le in the package home:Admin/ctris.

This is an example of a configuration le with a trigger services step:

workflow:
 steps:
 - trigger_services:
 project: home:Admin
 package: ctris

8.1.6.3 Filters

You can customize when workflows run by declaring branch or Event filters. They will make
workflows run or not for specific branches/events.

You can define them in the configuration le .obs/workflows.yml. Here's an example:

workflow:
 steps:
 - branch_package:
 source_project: home:jane_doe
 source_package: ctris
 target_project: games
 filters:
 event: pull_request
 branches:
 only:
 - master
 - staging

86 OBS Workflows

https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.source_service.html
https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.source_service.html

8.1.6.3.1 Filters Delimiters: only and ignore

Some steps can affect a group of elements (branches) You can use filter delimiters like only and
ignore to specify which elements should be affected, or not, by the step.

The available filters delimiters are:

only: the step only affects the elements in the list.

ignore: the step affects all the elements except those in the list.

Note
only has precedence over ignore, so if both are defined, ignore is not considered.

This is an example to run a workflow only for the target branches master:

workflow:
 steps:
 - rebuild_package:
 project: games
 package: ctris
 filters:
 branches:
 only:
 - master

This is an example to run a workflow for all the target branches except for the branch staging:

workflow:
 steps:
 - rebuild_package:
 project: games
 package: ctris
 filters:
 branches:
 ignore:
 - staging

87 OBS Workflows

8.1.6.3.2 Event Filter

Setting an event filter will run the workflow only for this event. The event filter doesn't ac-
cept multiple events. Documentation on the SCM events can be found here: Section 8.1.5.1, “SCM

Events”.

The available event filters are:

pull_request is for pull request events.

merge_request is an alias for the 'pull_request' event. Introduced with workflow version
1.1 (also see Section 8.3.1, “Workflow Version Table”). .

push is for push events related to commits.

tag_push is for push events related to tags.

The following is an example to run a workflow only for a pull request event:

workflow:
 steps:
 - branch_package:
 source_project: games
 source_package: ctris
 target_project: home:jane_doe
 filters:
 event: pull_request

8.1.6.3.3 Branches Filter

Matches target branches based on their names and runs a workflow only for those branches.

This is an example to run a workflow for all target branches, except master and final:

workflow:
 steps:
 - branch_package:
 source_project: home:jane_doe
 source_package: ctris
 target_project: games
 filters:
 branches:
 ignore:
 - master
 - final

Learn more about Filters Delimiters: only and ignore.

88 OBS Workflows

Note
tag_push events are not supported by the branches filter.

8.1.6.3.4 Labels Filter

The labels filter attempts to match labels created on a pull request. The workflow will run only
if the label name on the pull request matches one of the labels names defined in the filter.

Example of running a workflow for a duplicate label:

workflow:
 steps:
 - branch_package:
 source_project: home:jane_doe
 source_package: ctris
 target_project: games
 filters:
 labels:
 only:
 - duplicate

Removing the label matching the one's defined in the filter section from the pull request will
do the following for the listed steps:

submit_request: revoke the previously created request

branch_package, link_package: delete the previously created target package

configure_repositories, rebuild_package, set_ags, trigger_services: nothing

Note
The labels filter is currently only supported for Github and Gitea.

Learn more about Filters Delimiters: only and ignore.

8.1.6.4 Placeholder Variables

With placeholder variables, workflows are now dynamic. Whenever a webhook event comes
in, OBS downloads the workflows le and parses it. This is when the placeholder variables are
replaced by the data they refer to in the webhook event payload.

89 OBS Workflows

Here's a list of supported placeholder variables and their mapping:

%{SCM_ORGANIZATION_NAME}: The name of the SCM organization, like openSUSE for
the GitHub repository openSUSE/open-build-service.

%{SCM_REPOSITORY_NAME}: The name of the SCM repository, like open-build-service for
the GitHub repository openSUSE/open-build-service.

%{SCM_PR_NUMBER}: The number of the pull/merge request from which the webhook
event originates. This placeholder variable should be defined in workflows running only
for pull request webhook events.

%{SCM_COMMIT_SHA}: The SHA of the commit from which the webhook event originates.

%{LABEL}: The LABEL of the pull request from which the webhook event was initiated.

Below is an example of a workflow with a placeholder variable:

The test_build workflow will branch a package based on the SCM repository name from
 which the webhook event came from.
test_build:
 steps:
 - branch_package:
 source_project: games
 source_package: %{SCM_REPOSITORY_NAME}
 target_project: games:CI
 filters:
 event: pull_request

For a more in-depth example in combination with configuration le location, refer to Sec-

tion 8.4.6, “Using a Custom Configuration File URL in Combination with Placeholder Variables”.

8.1.7 Status Reporting

Once all the steps in the workflow are done, OBS will report the build results back to GitHub.

OBS will show detailed package build status for each distribution and architecture you have set
up in the configuration le.

FIGURE 8.5: BUILD STATUS

90 Status Reporting

Moreover, if your package builds several multibuild flavors, the status will have the flavor

(https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.multibuild.html) name ap-
pended to the package name:

FIGURE 8.6: BUILD STATUS FOR SEVERAL MULTIBUILD FLAVORS

Note
Due to a limitation, the initial "pending" build status of packages with multibuild flavors
is not reported. The build status for those flavors will however still be reported when
the build finishes.

8.1.8 Workflow Runs

For every SCM event, OBS compiles relevant information about the workflows running on the
system. You can nd the so-called "Workflow Runs" under the list of tokens.

FIGURE 8.7: TOKENS LIST

91 Workflow Runs

https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.multibuild.html
https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.multibuild.html

From the list of workflow runs, you can get information like:

the status (running/fail/success) represented by icons,

the type of event and action,

links to the SCM repository, pull/merge request or commit involved,

the time when the workflow was triggered

FIGURE 8.8: WORKFLOW RUNS

Click on each workflow run to get detailed information about it. OBS records the request received
from the SCM,

FIGURE 8.9: WORKFLOW RUNS - REQUEST

92 Workflow Runs

the response sent back to the SCM,

FIGURE 8.10: WORKFLOW RUNS - RESPONSE

and the artifacts used or generated during the run of each workflow.

FIGURE 8.11: WORKFLOW RUNS - ARTIFACTS

These records will help with debugging workflows. If an error occurs in any of the workflow
steps, the workflow run will record error messages. And reading the artifacts will help to un-
derstand what happened behind the scenes.

8.1.9 Errors

TABLE 8.1: COMMON ERRORS

Error Reason

"Project not found" Make sure the projects you declared in
the .obs/workflows.yml le exist in your
OBS instance.

"Package not found" Make sure the packages you declared in
the .obs/workflows.yml le exist in your
OBS instance.

93 Errors

Error Reason

No build result updates are displayed in your
PR/MR

Make sure there are repositories defined on
your source project. Another reason can be
that the build did not start because your
package is "unresolvable" or "broken".

The project in OBS doesn't get updated with
the latest changes in the SCM.

For certain steps you need to set up a _ser-
vice le. Follow the obs-service-tar_scm

(https://github.com/openSUSE/obs-ser-

vice-tar_scm#user-documentation) docu-
mentation.

8.1.10 Equivalence Table

TABLE 8.2: EQUIVALENCE TABLE

GitHub GitLab Gitea

Repository Project Repository

Pull request Merge request Pull request

PR MR PR

Push Push Hook Push

Pull requests (in webhook
configuration)

Merge request events (in
webhook configuration)

Pull Request (in webhook
configuration)

Pushes (in webhook configu-
ration)

Push events (in webhook
configuration)

Push (in webhook configura-
tion)

8.2 SCM/CI Workflow Steps Reference Table

For each step, this table shows which event on the SCM will trigger which operations on the OBS.

94 Equivalence Table

https://github.com/openSUSE/obs-service-tar_scm#user-documentation
https://github.com/openSUSE/obs-service-tar_scm#user-documentation
https://github.com/openSUSE/obs-service-tar_scm#user-documentation

TABLE 8.3: WORKFLOW STEPS REFERENCE TABLE

SCM
event
and ac-
tion

branch_pack-
age step

sub-
mit_re-
quest
step

link_pack-
age step

re-
build_pack-
age step

trig-
ger_ser-
vices
step

config-
ure_repos-
itories
step

set_ags
step

Pull Re-
quest
opened

The
%{source_project}/

%{source_pack-

age}

will be
branched
to %{tar-
get_project}:PR-%{SCM_PR_NUM-

BER}/%{source_pack-

age} The
%{SCM_COM-

MIT_SHA}

will be
updated
in the le
_branch_re-

quest

or in the
scmsync

attribute
of the
package.
This will
trigger a
run of the
services,
which
will trig-
ger a re-
build.

Create a
submit
request
from
%{source_project}/

%{source_pack-

age} to
%{tar-

get_project}/%{tar-

get_pack-

age}. The
request
status
changes
will be
report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

The
%{source_project}/

%{source_pack-

age}

will be
linked in-
to %{tar-
get_project}:PR-%{SCM_PR_NUM-

BER}/%{source_pack-

age} The
%{SCM_COM-

MIT_SHA}

will be
updat-
ed in the
scmsync

attribute
of the
package.
This will
trigger a
run of the
services,
which
will trig-
ger a re-
build.
The build
results
of the

The
%{project}/

%{pack-

age} will
be re-
build.
The build
results
will be
report-
ed back
to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

The ser-
vices of
%{project}/

%{pack-

age} will
be trig-
gered.
The build
results
will be
report-
ed back
to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

The
reposito-
ries will
be con-
figured
for the
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER}

project.
Nothing
will be
report-
ed to the
SCM.

The ags
will be
config-
ured
for the
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER}/%{pack-

age}.
Nothing
will be
report-
ed to the
SCM.

95 SCM/CI Workflow Steps Reference Table

SCM
event
and ac-
tion

branch_pack-
age step

sub-
mit_re-
quest
step

link_pack-
age step

re-
build_pack-
age step

trig-
ger_ser-
vices
step

config-
ure_repos-
itories
step

set_ags
step

The build
results
of the
branched
package
will be
report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

linked
package
will will
be report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

Pull Re-
quest up-
dated

The
%{SCM_COM-

MIT_SHA}

will be
updated
in the le
_branch_re-

quest

or in the
scmsync

attribute
of the
package
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER}/%{source_pack-

age} This
will trig-

Super-
sede the
request it
previous-
ly creat-
ed with
a new
request
from
%{source_project}/

%{source_pack-

age} to
%{tar-

get_project}/%{tar-

get_pack-

age}. The
request
status

The
%{SCM_COM-

MIT_SHA}

will be
updated
in in the
scmsync

attribute
of the
package
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER}/%{source_pack-

age} This
will trig-
ger a run
of the
services,

The
%{project}/

%{pack-

age} will
be re-
build.
The build
results
will be
report-
ed back
to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

The ser-
vices of
%{project}/

%{pack-

age} will
be trig-
gered.
The build
results
will be
report-
ed back
to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

The
reposito-
ries will
be con-
figured
for the
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER}

project.
Nothing
will be
report-
ed to the
SCM.

The ags
will be
config-
ured
for the
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER}/%{pack-

age}.
Nothing
will be
report-
ed to the
SCM.

96 SCM/CI Workflow Steps Reference Table

SCM
event
and ac-
tion

branch_pack-
age step

sub-
mit_re-
quest
step

link_pack-
age step

re-
build_pack-
age step

trig-
ger_ser-
vices
step

config-
ure_repos-
itories
step

set_ags
step

ger a run
of the
services,
which
will trig-
ger a re-
build.
The build
results
will be
report-
ed back
to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

changes
will be
report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

which
will trig-
ger a re-
build.
The build
results
will be
report-
ed back
to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

Pull Re-
quest
closed

The
project
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER} will
be delet-
ed.

The sub-
mit re-
quest will
be re-
voked.

The
project
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER} will
be delet-
ed.

This
event is
ignored.

This
event is
ignored.

This
event is
ignored.

This
event is
ignored.

Pull Re-
quest re-
opened

The
project
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER} will

Create a
submit
request
from
%{source_project}/

The
project
%{tar-

get_project}:PR-%{SCM_PR_NUM-

BER} will

This
event is
ignored.

This
event is
ignored.

This
event is
ignored.

This
event is
ignored.

97 SCM/CI Workflow Steps Reference Table

SCM
event
and ac-
tion

branch_pack-
age step

sub-
mit_re-
quest
step

link_pack-
age step

re-
build_pack-
age step

trig-
ger_ser-
vices
step

config-
ure_repos-
itories
step

set_ags
step

be re-
stored.
This will
trigger a
rebuild of
the con-
tained
packages.
The build
results
of the
branched
package
will be
report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

%{source_pack-

age} to
%{tar-

get_project}/%{tar-

get_pack-

age}. The
request
status
changes
will be
report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

be re-
stored.
This will
trigger a
rebuild of
the con-
tained
packages.
The build
results
of the
branched
package
will be
report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

Push The
%{source_project}/

%{source_pack-

age}

will be
branched
to %{tar-
get_project}/%{source_pack-

age}-%{SCM_COM-

MIT_SHA}

Create a
submit
request
from
%{source_project}/

%{source_pack-

age} to
%{tar-

get_project}/%{tar-

get_pack-

The
%{source_project}/

%{source_pack-

age}

will be
linked in-
to %{tar-
get_project}/%{source_pack-

age}-%{SCM_COM-

MIT_SHA}

The
%{project}/

%{pack-

age} will
be re-
build.
The build
results
will be
report-

The ser-
vices of
%{project}/

%{pack-

age} will
be trig-
gered.
The build
results
will be

The
reposito-
ries will
be con-
figured
for the
%{project}.
Nothing
will be
report-

The ags
will be
config-
ured
for the
%{project}/

%{pack-

age}.
Nothing
will be

98 SCM/CI Workflow Steps Reference Table

SCM
event
and ac-
tion

branch_pack-
age step

sub-
mit_re-
quest
step

link_pack-
age step

re-
build_pack-
age step

trig-
ger_ser-
vices
step

config-
ure_repos-
itories
step

set_ags
step

The build
results
of the
branched
package
will be
report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

age}. The
request
status
changes
will be
report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

The build
results
of the
linked
package
will be
report-
ed to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

ed back
to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

report-
ed back
to the
%{SCM_COM-

MIT_SHA}

as com-
mit sta-
tus.

ed to the
SCM.

report-
ed to the
SCM.

Tag Push The
%{source_project}/

%{source_pack-

age}

will be
branched
to %{tar-
get_project}/%{source_pack-

age}-%{TAG_NAME}

Nothing
will be
report-
ed to the
SCM.

Create a
submit
request
from
%{source_project}/

%{source_pack-

age} to
%{tar-

get_project}/%{tar-

get_pack-

age}.

The
%{source_project}/

%{source_pack-

age}

will be
linked in-
to %{tar-
get_project}/%{source_pack-

age}-%{TAG_NAME}

Nothing
will be
report-
ed to the
SCM.

The
%{project}/

%{pack-

age} will
be re-
build.
Nothing
will be
report-
ed to the
SCM.

The ser-
vices of
%{project}/

%{pack-

age} will
be trig-
gered.
Nothing
will be
report-
ed to the
SCM.

The
reposito-
ries will
be con-
figured
for the
%{project}.
Nothing
will be
report-
ed to the
SCM.

The ags
will be
config-
ured
for the
%{project}/

%{pack-

age}.
Nothing
will be
report-
ed to the
SCM.

99 SCM/CI Workflow Steps Reference Table

8.3 SCM/CI Workflow Versions
To secure the compatibility of SCM/CI workflows with new features and changes, we are intro-
ducing those through new versions. We specify them with a MAJOR.MINOR versioning scheme.
We introduce breaking, non-backward compatible features and changes with major version up-
dates. Minor updates only include backward compatible updates, but might require adjustments
to the workflows in order to benefit from new features. The workflow version is specified on
the toplevel of your workflow configuration yaml le. Right now we don't enforce to specify a
version in the workflow yaml configuration and default to the latest minor version.

 version: '1.0'
 workflow:
 steps:
 - link_package:
 source_project: GNOME:Factory
 source_package: gnome-shell
 target_project: home:jane:playground

8.3.1 Workflow Version Table

Current available workflow versions and the introduced changes can be found in the versions
table below.

TABLE 8.4: WORKFLOW VERSIONS

Version Changes

1.1 Add alias for 'merge_request' to event filters.
Previously we only supported the term 'pul-
l_request'.

8.4 SCM/CI Workflow Integration Use-Cases

8.4.1 OBS SCM Service

For some of the use cases, you might want the OBS package to get the sources from the pull
request in GitHub.

100 SCM/CI Workflow Versions

For this, you can make use of the existing obs-service-tar_scm (https://github.com/openSUSE/obs-

service-tar_scm#user-documentation) service. Your package should include a properly defined
_service le. obs-service-tar_scm will automatically use the sources of the pull request that trig-
gered it.

8.4.2 Test Build a Package For Every Pull Request on GitHub

You decide to manage your package sources from a GitHub repository. However, every time
someone tries to add changes to your sources by opening a pull request, you need to verify that
your package still builds for certain repositories and architectures in OBS. You can have the best
of both worlds with the SCM/CI Workflow Integration Setup.

You will need:

A project in OBS that you own, it will be the target project. Let's say: home:jane:playground.

A package in OBS that you want to test build, it will be the source package inside the source
project. E.g.: GNOME:Factory/gnome-shell.

A repository in GitHub with the source code that will receive the pull requests, e.g.: https://
github.com/GNOME/gnome-shell.

The required tokens to allow OBS and GitHub talk each other as explained in Section 8.1.4,

“Token Authentication”

The required webhooks so GitHub notifies OBS of any event as explained in Section 8.1.5,

“Webhooks”

This is obviously a good candidate to use the OBS SCM Service.

There are two different strategies to do this: branching the package or linking to it.

8.4.2.1 Branch

If you decide to branch the package for the test build, the configuration le should be something
like this:

workflow:
 steps:
 - branch_package:
 source_project: GNOME:Factory
 source_package: gnome-shell

101 Test Build a Package For Every Pull Request on GitHub

https://github.com/openSUSE/obs-service-tar_scm#user-documentation
https://github.com/openSUSE/obs-service-tar_scm#user-documentation

 target_project: home:jane:playground
 filters:
 event: pull_request

Whenever someone opens a new pull request in the repository, OBS will branch the source
package onto the target project, trigger the build, and report the results in the pull request's status
checks.

Keep in mind that, when OBS branches a package, it copies the repositories from the source
project to the target project, so everything is ready to start building.

Once the pull request is accepted or closed, the branched package will be deleted.

Read SCM/CI Workflow Integration Setup and, specifically, the workflow steps (Section 8.1.6.2, “OBS

Workflow Steps”).

8.4.2.2 Link and Configure Repositories

If you prefer to link the package for the test build, the configuration le should be something
like this:

workflow:
 steps:
 - link_package:
 source_project: GNOME:Factory
 source_package: gnome-shell
 target_project: home:jane:playground
 - configure_repositories:
 project: home:jane:playground
 repositories:
 - name: openSUSE_Tumbleweed
 paths:
 - target_project: openSUSE:Factory
 target_repository: snapshot
 architectures:
 - x86_64
 - i586
 - name: openSUSE_Leap_15.2
 paths:
 - target_project: openSUSE:Leap:15.2
 target_repository: standard
 architectures:
 - x86_64
 filters:
 event: pull_request

102 Test Build a Package For Every Pull Request on GitHub

Whenever someone opens a new pull request in the repository, OBS will create a target package
linked to the source package.

Unlike the branching, in this case the repositories are not copied to the target project. That is
why you need to set up the configure_repositories step giving you the flexibility to decide which
repositories are you interested in.

Read SCM/CI Workflow Integration Setup and, specifically, the workflow steps (Section 8.1.6.2, “OBS

Workflow Steps”).

8.4.3 Rebuild a Package for Every Change in a Branch

You have a test build set up and you want it to keep up to date with the new changes you add
to the PR. One way to do it, is to configure a rebuild package step with a push event filter.

You need:

A project and package to test build. E.g.: home:jane/rust

A repository in GitHub with an opened PR. E.g.: https://github.com/jane/rust/pull/1

The required tokens to allow OBS and GitHub talk each other as explained in Section 8.1.4,

“Token Authentication”

The required webhooks so GitHub notifies OBS of any event as explained in Section 8.1.5,

“Webhooks”

The source code synchronization setup with the OBS SCM Service.

The workflow configuration should be like this one:

workflow:
 steps:
 - rebuild_package:
 project: home:jane
 package: rust
 filters:
 event: push

103 Rebuild a Package for Every Change in a Branch

8.4.4 Set Flags on a Package to Disable Builds for an Architecture

When you branch a package, all its repositories and their architectures will be copied over. For
this package, you might want to disable builds for a certain repository or architecture. This is
possible with the set_ags step.

The workflow configuration should be like this one:

workflow:
 steps:
 - branch_package:
 source_project: home:jane_doe
 source_package: rust
 target_project: home:jane_doe:CI
 - set_flags:
 flags:
 - type: build
 status: disable
 project: home:jane_doe:CI
 package: rust
 architecture: x86_64

8.4.5 Create Package on OBS for Every Software Release With Git
Tags

You have a software project for which you mark releases with Git tags. For every release, you
want to create a package on OBS. This can be automated in a workflow with the branch_package
step and the tag_push event filter. Once the workflow is in place, every tag you push to your
SCM repository will branch a package on OBS and create, then build a package for the source
code associated to the tag's commit. This way, your users can always install a versioned release
of your software project. You can also link one of those versioned releases to another project
on OBS if you need it as a dependency.

104 Set Flags on a Package to Disable Builds for an Architecture

After the usual setup for OBS workflows with tokens and webhooks (see Section 8.1, “SCM/CI

Workflow Integration Setup”), you will need:

A package in OBS that you own, and for which you want to create releases. It will be the
source package (e.g.: home:jane/my_package) and it will contain a _service le. When this
package is branched by the branch_package step, the branched package name will end with
the name of the tag which was pushed (e.g.: my_package-1.0).

A project in OBS that you own, and which will contain all packages created by the
branch_package step. It will be the target project (e.g.: home:jane:releases).

A SCM repository for your software project with the source code and spec le in which
you will create Git tags to mark releases, e.g.: https://github.com/jane/my_package.

The workflow configuration should be like this one:

workflow:
 steps:
 - branch_package:
 source_project: home:jane
 source_package: my_package
 target_project: home:jane:releases
 filters:
 event: tag_push

The _service le in your source package should be like:

<?xml version="1.0"?>
 <services>
 <service name="obs_scm">
 <param name="versionformat">@PARENT_TAG@</param>
 <param name="url">https://github.com/jane/my_package.git</param>
 <param name="scm">git</param>
 <param name="revision">@PARENT_TAG@</param>
 <param name="extract">my_package.spec</param>
 </service>
 <service name="set_version"/>
 <service name="tar" mode="buildtime"/>
 </services>

105 Create Package on OBS for Every Software Release With Git Tags

Here's an explanation of the services involved:

The obs_scm (https://github.com/openSUSE/obs-service-tar_scm#obs_scm) service fetches
the source code from your SCM repository for a specific revision, which in this case, is
for the latest tag (@PARENT_TAG@). Don't forget to extract the spec le with a extract
element.
Set the versionformat to match how you want to name your releases. This is typically the
Git tag name, so @PARENT_TAG@ is what you should use. For other options, refer to git

log (https://git-scm.com/docs/git-log) and its format:<format-string> documentation.

The set_version (https://github.com/openSUSE/obs-service-set_version) service updates
the Version directive in the spec le downloaded by the obs_scm service. The version format
comes from the versionformat element under the obs_scm service.

The tar (https://github.com/openSUSE/obs-service-tar_scm#tar) service creates a tarball
out of the source code fetched by the obs_scm service.

For the spec le in your SCM repository, pay attention to this:

The Source0 directive is based on values you provided to the obs_scm service in the _service
le and it should be like this: my_package-%{version}.tar.
The rst part is the SCM repository name (e.g: my_package). The second part is the version
macro which will be expanded to match what you defined in the versionformat of the
obs_scm service in the _service le. The third part is the archive extension (.tar) since a
tarball was created by the tar service.

Under the %prep directive, you might have to update the %setup directive if your source
package name doesn't match the name of your SCM repository. Here's how, with my_pack-
age being the SCM repository name:

%prep
 %setup -q -n my_package-%version

106 Create Package on OBS for Every Software Release With Git Tags

https://github.com/openSUSE/obs-service-tar_scm#obs_scm
https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-log
https://github.com/openSUSE/obs-service-set_version
https://github.com/openSUSE/obs-service-tar_scm#tar

8.4.6 Using a Custom Configuration File URL in Combination with
Placeholder Variables

It may happen that you have multiple repositories following the same set of workflow steps, and
you would rather have one copy of the configuration le stored in a single place and applied
to multiple workflows. This can be done with the combination of placeholder variables and the
configuration le url setting

Let's say you have the following configuration le that works with your SCM repository called
gnome-shell

workflow:
 steps:
 - branch_package:
 source_project: "test-project"
 source_package: "gnome-shell"
 target_project: "test-target-project"
 filters:
 event: pull_request

If you replace gnome-shell with %{SCM_REPOSITORY_NAME} like so:

workflow:
 steps:
 - branch_package:
 source_project: "test-project"
 source_package: "%{SCM_REPOSITORY_NAME}"
 target_project: "test-target-project"
 filters:
 event: pull_request

It will perform just as well as it did before, however now this configuration can be applied to
any other OBS package in the test-project and SCM repository combination assuming they have
the same name.

From here the only thing left to do would be to host this le somewhere where OBS can access
it, creating a workflow token and the corresponding webhooks (following the setup instructions
at Section 8.1.4, “Token Authentication”) for every SCM repository you want this configuration le
to apply to, making sure you set the correct configuration url (see Section 8.1.6.1, “Configuration

File Location”).

There are many other ways to use these two features in parallel, make sure to read Section 8.1.6.4,

“Placeholder Variables” and Section 8.1.6.1, “Configuration File Location” to get some inspiration on
how you can use them in your project.

107 Using a Custom Configuration File URL in Combination with Placeholder Variables

9 Staging Workflow

9.1 Working with Staging Projects
This API provides an easy way to get information about a single or all staging projects like
state, requests and checks. Note: To use this API, you rst need to setup a staging workflow
for a project.

9.1.1 Overview of All Staging Projects

This endpoint provides an overview of all staging projects for a certain project.

geeko > osc api '/staging/openSUSE:Factory/staging_projects/'

Which will return a simple list of staging projects:

<staging_projects>
 <staging_project name="openSUSE:Factory:Staging:A"/>
 <staging_project name="openSUSE:Factory:Staging:B"/>
</staging_projects>

The returned XML can include more information by adding any combination of this three para-
meters: requests, status and history. This example combines requests and status:

geeko > osc api '/staging/openSUSE:Factory/staging_projects/?requests=1&status=1'

<staging_projects>
 <staging_project name="openSUSE:Factory:Staging:A" state="unacceptable">
 <staged_requests count="6">
 <request id="368" type="submit" creator="scp" state="review" package="amet"
 superseded_by="" updated="2020-04-29T17:39:36Z"/>
 <request id="369" type="submit" creator="scp" state="declined" package="aut_0"
 superseded_by="" updated="2020-04-29T17:41:45Z"/>
 <request id="371" type="submit" creator="scp" state="review" package="dolor"
 superseded_by="" updated="2020-04-29T18:07:51Z"/>
 </staged_requests>
 <untracked_requests count="0"/>
 <obsolete_requests count="2">
 <request id="369" type="submit" creator="scp" state="declined" package="aut_0"
 superseded_by="" updated="2020-04-29T17:41:45Z"/>
 </obsolete_requests>
 <missing_reviews count="4">

108 Working with Staging Projects

 <review request="369" state="new" package="aut_0" creator="" by_user="Requestor"/>
 </missing_reviews>
 <building_repositories count="0"/>
 <broken_packages count="0"/>
 <checks count="0"/>
 <missing_checks count="0"/>
 </staging_project>
 <staging_project name="openSUSE:Factory:Staging:B" state="empty">
 <staged_requests count="0"/>
 <untracked_requests count="0"/>
 <obsolete_requests count="0"/>
 <missing_reviews count="0"/>
 <building_repositories count="0"/>
 <broken_packages count="0"/>
 <checks count="0"/>
 <missing_checks count="0"/>
 </staging_project>
</staging_projects>

9.1.2 Overview of a Single Staging Project

This endpoint provides an overview of a single staging project.

geeko > osc api '/staging/openSUSE:Factory/staging_projects/openSUSE:Factory:Staging:A'

Which will return the following XML:

<staging_project name="openSUSE:Factory:Staging:A"/>

The returned XML can include more information by adding any combination of this three para-
meters: requests, status and history. This example combines status and history:

geeko > osc api '/staging/openSUSE:Factory/staging_projects//openSUSE:Factory:Staging:A?
status=1&history=1'

<staging_project name="openSUSE:Factory:Staging:A" state="unacceptable">
 <building_repositories count="0"/>
 <broken_packages count="0"/>
 <checks count="0"/>
 <missing_checks count="0"/>
 <history count="8">
 <entry event_type="Staged request" request="368" package="amet" author="Admin"/>
 <entry event_type="Staged request" request="369" package="aut_0" author="Admin"/>
 <entry event_type="Staged request" request="371" package="dolor" author="Admin"/>
 <entry event_type="Staged request" request="374" package="harum" author="Admin"/>

109 Overview of a Single Staging Project

 <entry event_type="Unstaged request" request="374" package="harum" author="Admin"/>
 </history>
</staging_project>

9.1.3 Copy a Staging Project

This endpoint creates a copy of a staging project. It will queue a job which is going to copy the
project configuration, repositories, groups and users.

geeko > osc api -X POST '/staging/openSUSE:Factory/staging_projects/
openSUSE:Factory:Staging:A/copy/openSUSE:Factory:Staging:A-copy'

9.2 Working with Requests
One of the main features of the staging workflow is assigning incoming requests to different
staging projects.

9.2.1 Assign Requests into a Staging Project

Our main project openSUSE:Factory received requests with id 1 and 2. We would like to group
these two requests together and move them into the staging project openSUSE:Factory:Stag-
ing:A. This can be done with the following command which will create a link to the package
in openSUSE:Factory:Staging:A.

geeko > osc api -X POST '/staging/openSUSE:Factory/staging_projects/
openSUSE:Factory:Staging:A/staged_requests' -d '<requests><request id="1"/><request
 id="2"/></requests>'

9.2.2 Remove Requests from a Staging Project

When we are done with testing the staging project openSUSE:Factory:Staging:A, we need to
remove the requests 1 and 2 again. The following command will remove the package links from
openSUSE:Factory:Staging:A.

geeko > osc api -X DELETE '/staging/openSUSE:Factory/staging_projects/
openSUSE:Factory:Staging:A/staged_requests' -d '<requests><request id="1"/><request
 id="2"/></requests>'

110 Copy a Staging Project

9.2.3 List Requests of a Staging Project

Listing all requests which are currently assigned to openSUSE:Factory:Staging:A can be done
with the following command.

geeko > osc api '/staging/openSUSE:Factory/staging_projects/openSUSE:Factory:Staging:A/
staged_requests'

Which will return the following XML:

<staged_requests>
 <request id="368" type="submit" creator="scp" state="review" package="amet"
 superseded_by="" updated="2020-04-29T17:39:36Z"/>
 <request id="369" type="submit" creator="scp" state="declined" package="aut_0"
 superseded_by="" updated="2020-04-29T17:41:45Z"/>
 <request id="371" type="submit" creator="scp" state="review" package="dolor"
 superseded_by="" updated="2020-04-29T18:07:51Z"/>
</staged_requests>

9.2.4 Exclude Requests for a Staging Workflow

Our main project openSUSE:Factory received requests with id 3 and 4. We would like to exclude
these two requests for the staging workflow project openSUSE:Factory.

geeko > osc api -X POST '/staging/openSUSE:Factory/excluded_requests' -d
 '<excluded_requests><request id="3" description="Reason description for request id
 3."></request><request id="4" description="Reason description for request id 4."></
request></excluded_requests>'

9.2.5 Bring Back Excluded Requests from a Staging Workflow

The following command will stop excluding requests with id 3 and 4 for the staging workflow
project openSUSE:Factory.

geeko > osc api -X DELETE '/staging/openSUSE:Factory/excluded_requests' -d
 '<excluded_requests><request id ="3"/><request id="4"/></excluded_requests>'

9.2.6 Accept Staging Project

Once all the requests are ready and the staging project has an acceptable state, the requests can
be merged. In other words, the staging project can be accepted.

111 List Requests of a Staging Project

geeko > osc api -X POST '/staging/openSUSE:Factory/staging_projects/
openSUSE:Factory:Staging:A/accept'

112 Accept Staging Project

10 Notifications

Note: The feature described in this chapter is not included yet
in any official OBS release.
That means this feature is only available through our Unstable project which we deploy on
public OBS instance (https://build.opensuse.org/) , but is still not part of an OBS release.

The "Notifications" page is the place that keeps you up-to-date with your daily OBS work. There,
you can see notifications of events that happen in OBS and are important for you.

You can configure them in detail to receive just what is of your interest. Not only that, with
the web UI interface, you can easily filter your notifications and mark them as read, improving
your OBS workflow experience.

10.1 Notifications Configuration
Click on the "Manage Your Notifications" link to define which notifications you want to receive.
You can see this link in the "Actions" menu on your "Profile" page and on the "Notifications" page.

FIGURE 10.1: "MANAGE YOUR NOTIFICATIONS" LINK.

On this page, you can configure under which conditions you receive each type of notification
(email, RSS, web). Mark the "web" checkboxes to configure what notifications you will receive
in the web UI.

113 Notifications Configuration

https://build.opensuse.org/

FIGURE 10.2: MARK WEB NOTIFICATIONS.

You can get web notifications from events happening to projects and packages where the group
you belong to is an owner. Just mark the "web" checkbox in the groups your are interested in.

FIGURE 10.3: MARK WEB NOTIFICATIONS FOR GROUPS.

10.2 Where Can We Find the Notifications?
At the top right corner of every page, you will nd a link to your notifications. It includes a
counter of your unread notifications. Just click on it to access your notifications page.

114 Where Can We Find the Notifications?

FIGURE 10.4: NOTIFICATIONS LINK.

10.3 Notifications Content

After clicking on the "Notifications" link, you will see a list of your most recent unread notifi-
cations.

FIGURE 10.5: NOTIFICATIONS PAGE.

115 Notifications Content

A notification can have different origins. Each notification item includes a couple of lines to
help recognize them among the others. You always have the option to click on a notification,
which will lead you to the specific section of OBS (request, comment, project, package, ...) with
the full details on what caused the notification.

10.4 Mark Notification as Read or Unread
Once you read a notification and possibly take action, you can mark it as read. This will sort the
notification in the "read" category and it's not shown anymore next to the one that might still
need some attention. Also worth mentioning that we perform a periodical cleanup that deletes
all the notifications older than 365 days.

There are different ways and places to mark your notifications as read. Marking a single noti-
fication can be done by simply clicking the button with the green checkmark shown on the
notification itself.

FIGURE 10.6: MARK SINGLE NOTIFICATION AS READ.

Another way is to mark it directly on the related element (for example the associated request)
through the little toolbar that appears on top. You will be redirected back to your notifications
page afterwards.

FIGURE 10.7: MARK NOTIFICATION AS READ THROUGH TOOLBAR.

If you received a lot of notifications and don't want to mark them one by one, there are two ways
to speed up the process. You can use the checkboxes on the left to select individual notifications
and click on the "Mark selected as 'Read'" button.

116 Mark Notification as Read or Unread

FIGURE 10.8: CHECKBOXES TO MARK MULTIPLE NOTIFICATIONS.

In case you exceed 300 notifications you have the possibility to use the button "Mark all as
'Read" that will appear on the right side to mark all notifications of the chosen filter as read.

FIGURE 10.9: MARK ALL AS READ.

Should you ever mark a notification as read by accident, you can simply revert this by selecting
the "read" filter on the right side and using the equivalent elements, used to mark them as read,
in order to bring them back to your unread notifications.

10.5 Notifications Filters

Filters help you in focusing your attention on a subset of your notifications. They are on the
left side of your screen.

117 Notifications Filters

FIGURE 10.10: EXAMPLE OF NOTIFICATION FILTERS.

118 Notifications Filters

Here's a description of all available filters:

Unread: All unread notifications, so notifications which you haven't marked as read, will
be displayed when selecting this filter.

Read: All notifications which you have marked as read will be displayed when selecting
this filter.

Comments: All unread notifications related to comments will be displayed when selecting
this filter.

Requests: All unread notifications related to requests will be displayed when selecting this
filter.

Incoming Requests: All unread notifications related to incoming requests, so requests which
someone submitted to a project/package you are involved in, will be displayed when se-
lecting this filter.

Outgoing Requests: All unread notifications related to outgoing requests, so requests which
you submitted to a project/package, will be displayed when selecting this filter.

Projects: All unread notifications related to a project will be displayed when selecting a
project filter. Each project with at least one unread notification has its own project filter.

Groups: All unread notifications related to a group will be displayed when selecting a group
filter. Each group with at least one unread notification has its own group filter.

10.6 API
Every user can check their unread notifications by querying:

osc api -X GET "/my/notifications"

It will return a list with your unread notifications:

<?xml version="1.0" encoding="UTF-8"?>
<notifications count="2">
 <total_pages>1</total_pages>
 <current_page>0</current_page>
 <notification id="3">
 <title>test 1</title>
 <who>Administrator</who>

119 API

 <state>new</state>
 <when/>
 <event_type>review_wanted</event_type>
 </notification>
 <notification id="25">
 <title>test 2</title>
 <who>User 2</who>
 <event_type>comment_for_package</event_type>
 <when/>
 </notification>
</notifications>

This one will toggle a notification read or unread.

osc api -X PUT "/my/notifications/3"

It will say if the operation went well or not.

<?xml version="1.0" encoding="UTF-8"?>
<status code="ok">
 <summary>Ok</summary>
</status>

For more informtion regarding the notifications API endpoints, check out our New API Docu-

mentation (https://api.opensuse.org/apidocs/#/Notifications/get_my_notifications) .

120 API

https://api.opensuse.org/apidocs/#/Notifications/get_my_notifications
https://api.opensuse.org/apidocs/#/Notifications/get_my_notifications

11 Moderation

As a platform where a lot of social interaction happens, OBS is not free of spam, harmful content
or other outcomes of user misconduct. Therefore, OBS provides features which help any user
report problematic content and help moderators to act accordingly. Those features are described
below, and they are helpful for admins, sta members, moderators and users.

11.1 Code of Conduct

The Code of Conduct is the starting point of the moderation process. What is considered prob-
lematic content in your Build Service instance? Maybe spam, scams, or projects with a forbidden
license? Both moderators and users should read the document and understand what is right or
wrong to behave properly. The document is usually displayed on the footer of the Build Service
instance.

FIGURE 11.1: CODE OF CONDUCT

Admins are responsible for making the Conde of Conduct visible to everyone. They should add
the text on Configuration > Code of Conduct to make it appear on the footer. It allows markdown.

121 Code of Conduct

FIGURE 11.2: CONFIGURATION CODE OF CONDUCT

11.2 Reporting Problematic Content

11.2.1 Who Can Report?

Any kind of user can report problematic content in OBS.

11.2.2 What Can Be Reported?

This is the list of elements that can be reported:

Comments

Projects

Packages

Requests

Users

122 Reporting Problematic Content

11.2.3 How To Report?

You can nd a Report action next to the comment, request or any of the elements mentioned
above. It is displayed as a button, a link or an item in the actions menu. Click on it and ll in
the form. You can simply choose one of the provided categories (Spam, Illegal Content, etc.)
or write your reason.

FIGURE 11.3: REPORT A COMMENT

FIGURE 11.4: REPORT A USER

123 How To Report?

When reporting a comment, the form allows you to report the comment's author as well. Which
saves you from having to go to the user's profile page afterwards.

FIGURE 11.5: REPORT COMMENT AND AUTHOR

Once the element is reported, moderators will act accordingly. The following sections describe
how they should proceed.

11.3 Acting as a Moderator

Moderators should inspect the elements reported by the users to decide whether the reports
are fair or not, and act accordingly. They can dismiss the report, hide comments or remove the
problematic elements, including users.

124 Acting as a Moderator

11.3.1 Who Is a Moderator?

Admins and sta members are the default moderators in any OBS instance unless they delegate
the role to another user. Going through Configuration > Manage Users, admins can assign the
Moderator role to someone else. From that moment on, only the users with the Moderator role
will be involved in the moderation process.

11.3.2 How Do Moderators Know About the Reports?

Next to any problematic element, they can see a yellow text warning about the reports.

FIGURE 11.6: REPORTS WARNING

However, it is convenient that moderators subscribe to moderation-related events, so they can
receive notifications of all the reports and other actions related to the moderation process.

FIGURE 11.7: MODERATION-RELATED NOTIFICATIONS

11.3.3 How To Moderate?

As a moderator you can click on the yellow warning about reports, usually displayed close to
the element. There, you can read all the reports and make a Decision. Write the reason why you
agree (Favor) or disagree (Cleared).

125 Who Is a Moderator?

FIGURE 11.8: DECISION FORM

You can read all the editions of a comment to better judge if the user misbehaved at some point.
Use the arrow next to the comment date for that.

FIGURE 11.9: COMMENT EDITION HISTORY

Once you have taken a favored decision, you or an admin can:

hide the comment: click on the Moderate button next to it to replace the original text with
a standard message;

126 How To Moderate?

FIGURE 11.10: MODERATE A COMMENT

revoke the request;

remove the comment, project, package or user.

Most of these actions are reversible. Read section Section 11.4, “Reverting Moderator's Actions”.

11.4 Reverting Moderator's Actions
Most of these actions are reversible except for removing a comment. You can recover a user,
project and package. You can click on the Permit button to show the hidden comment again.
However, the comments will be permanently removed.

11.5 User Appeal
After a moderator makes a decision based on a report, the affected user is notified. The user can
appeal and justify why their content is not harmful. There is an Appeal action in the notification.

127 Reverting Moderator's Actions

In case the moderator changes their mind, they can revert the actions they made. Read section
Section 11.4, “Reverting Moderator's Actions”.

FIGURE 11.11: APPEAL TO DECISION

11.6 Canned Responses For Moderators
Handling reports can be redundant, therefore moderators can customize their own set of canned
responses to reuse them for their decisions.

FIGURE 11.12: CANNED RESPONSES

128 Canned Responses For Moderators

V Best Practices

12 Using the OBS Web UI 130

13 Basic Concepts and Work Styles 177

14 How to integrate external SCM sources 178

15 Publishing Upstream Binaries 181

16 Bootstrapping 187

17 osc Example Commands 191

18 Advanced Project Setups 192

19 Building Kernel Modules 193

20 Common Questions and Solutions 194

12 Using the OBS Web UI

This chapter explains and shows how you could use OBS Web UI. We will show and use OBS
Web UI based on http://build.opensuse.org . You need to make an account rst to follow this
chapter contents.

12.1 Homepage and Login

Open a browser and navigate to https://build.opensuse.org

FIGURE 12.1: START PAGE

To proceed, you'll need to log in and authenticate with your username and your password. Click
on Login and enter the data in the upper right corner.

130 Homepage and Login

http://build.opensuse.org
https://build.opensuse.org

FIGURE 12.2: LOGIN

After successful authentication, you'll end up on the start page again - with new options visible.
We'll go through most of them in detail, but rst lets create your home: in the next step.

131 Homepage and Login

FIGURE 12.3: LOGGED IN

12.2 Home Project

Every user has a home project (home:[userid]) where they have write access by default. This
is a personal workspace where you can experiment and play. Click on the link "Home Project"
at the upper right to get to your home project.

12.2.1 The Project Page

Your home project will be empty for now, but you can add packages containing sources/build
recipes and projects which are containers for the build targets. As you can see, you're the default
maintainer which grants you full write access to this project. You're also the bug owner of your
project.

132 Home Project

FIGURE 12.4: PROJECT PAGE

12.2.2 Changing a project's title and description

On every project page you will nd a "Edit description" link. This link will lead you to a place
were you can review and change your project's title and description. Click on the "Update project"
button to save.

FIGURE 12.5: UPDATING PROJECT DESCRIPTION

133 Changing a project's title and description

12.2.3 Creating Subprojects to a Project

Subprojects are projects that are part of another projects namespace. Subprojects are an easy
way to organize multiple projects. On the "Subprojects" tab you can nd a list subprojects that
belong to a project. To create a new subproject click on the "New subproject" link, ll in the
form and press the "Create project" button.

Note
Maintainers of upper projects can always modify the subprojects. Apart from that all
projects are separated and have no influence on each other.

FIGURE 12.6: CREATING SUBPROJECTS

12.3 My Projects, Server Status

For now, let's leave your home for a bit and explore the build service. Click on "My Projects" on
the left at the bottom. This opens a page listing your watched projects and your involvements
in projects or packages.

134 Creating Subprojects to a Project

FIGURE 12.7: MY PROJECTS

Now, let's visit the main monitor page by clicking on "Status Monitor". You see here the status of
the services, some graphs and graphics are showing the currently running and completed jobs
and the overall load.

FIGURE 12.8: STATUS MONITOR

135 My Projects, Server Status

12.4 Create a link to a package in your home
We'll show you how you can log in and use the web interface hosted at build.opensuse.org.
This includes login, adding a link to a package in your personal workspace (home:) and how
to build that package by adding a repository. First, let's enter "My Projects" by clicking on the
link at the bottom left.

FIGURE 12.9: MY PROJECTS

Now let's create a link to a package and add a repository to build against. A link is basically a
pointer to sources of an already existing package. By "repository" we mean container of built
binary packages like Debian_8 or openSUSE_13.2. Let's follow these steps:

1. Add link to the existing package.

2. Add repository.

3. Observe the build on the monitor page.

4. Look at package's page.

12.4.1 Add Link to Existing Package

Right below packages, there's "Branch Package from other Project" .

FIGURE 12.10: BRANCH PACKAGE

136 Create a link to a package in your home

Open that page and enter for

Name of original project:
Apache

and for

Name of package in original project:
flood

- we'll leave "Name of linked package in target project" empty. This is shown on the next picture:

FIGURE 12.11: APACHE FLOOD BRANCH

Proceed with "Create Branch" and you'll be redirected to your home again. You'll see a new
package "ood" and a notice about the branch being added.

137 Add Link to Existing Package

FIGURE 12.12: BRANCHED PACKAGE

Wonderful, we've added a pointer to the sources! Now we need to add a repository, so the
builder knows the target-distribution to build packages for. How to add a repository to a project
is documented at Section 12.6.1, “Adding a repository”.

12.4.2 Package Page, Build Log and Project Monitor Page

Next, it is time to explore the Monitor page, the package detail page and the build log. Just click
on the links and explore the web interface. I recommend starting with your home project's top
level 'overview' page - click on the Overview tab and you may see something like this:

FIGURE 12.13: FLOOD_SUCCEEDED_FINISHED

138 Package Page, Build Log and Project Monitor Page

If you wait a bit, you would see the below building success screen

FIGURE 12.14: FLOOD_BUILD_SUCCESS

Click the “succeeded” message, then you will see the build log as below.

FIGURE 12.15: FLOOD_BUILD_LOG

139 Package Page, Build Log and Project Monitor Page

12.5 Repository Output: Built Packages
To nd the RPMs you built, go to your home project page and click Repositories. From there
click on the blue repository name. For example, openSUSE_Factory:

FIGURE 12.16: MY_REPOSITORY

Note
Published repositories are marked with the OBS truck

Now click Go to download repository. Note that publishing the repository might take a while.
Before the binary repository is published, you will receive a 404 error. When the binaries are
available, you will see something like this:

FIGURE 12.17: REPOSITORY STRUCTURE

Your RPMs can be found in the subdirectories, and the .repo le is suitable for use with zypper,
yum or other repository-friendly package management tools.

140 Repository Output: Built Packages

12.6 Managing Repositories
This section will show how you can manage your project's repositories.

12.6.1 Adding a repository

To add a repository to your project, click on "Add Repositories" on the project's repository tab.
This will direct you to a list of possible distributions you can build packages for, see Figure 12.18,

“Adding a Repository to a Project”.

FIGURE 12.18: ADDING A REPOSITORY TO A PROJECT

Note
If you could not nd a repository that ts your needs, you might want to switch to the
expert mode. Click on the "Expert mode" link right to the button. This page allows you to
search and select a repository of any project available in OBS and add it to your projects
repository list.

This will take you back to your home: project. The build repository might be disabled: if so, click
on the cogwheel to enable it. Congratulations, it is configured. On a heavily loaded server, it can
sometimes take a few minutes for your changes to become effective, but your linked package
will automatically begin building.

141 Managing Repositories

12.6.2 Add Download on Demand repositories to a project

When you have administrator rights you will be able to add Download on Demand repositories
to your project. To do so, click on the "Add DoD repository" link and enter your DoD repository
data into the form.

FIGURE 12.19: ADDING A DOWNLOAD ON DEMAND REPOSITORY

The minimal set of elds you have to enter are architecture, repository type and the URL that
provides the binary packages. Detailed information about the data you can enter here can be
found at Section 22.3, “Download on Demand Repositories (DoD)”. Press "Save" to create the repos-
itory.

142 Add Download on Demand repositories to a project

FIGURE 12.20: DOWNLOAD ON DEMAND REPOSITORY FORM

When the repository got added you are able to edit, delete or add additional DoD repository
sources.

143 Add Download on Demand repositories to a project

12.6.3 Adding DoD Repository Sources to a Repository

FIGURE 12.21: ADDING DOWNLOAD ON DEMAND REPOSITORY SOURCES

144 Adding DoD Repository Sources to a Repository

Open the DoD repository sources form by clicking the "Add" link. Here you can enter your
additional DoD repository source. Click the "Add Download on Demand" button.

145 Adding DoD Repository Sources to a Repository

FIGURE 12.22: FORM FOR ADDING DOD REPOSITORY SOURCES

146 Adding DoD Repository Sources to a Repository

12.6.4 Editing DoD Repository Sources

To edit DoD repository sources after they got added click on the "Edit" link that you nd right
to each DoD repository source.

147 Editing DoD Repository Sources

FIGURE 12.23: FORM FOR EDITING DOD REPOSITORY SOURCES

148 Editing DoD Repository Sources

12.6.5 Editing DoD Repository Sources

To delete a repository or repository source, click on the "Delete" link and accept the confirmation
dialog.

12.7 Image Templates

Image templates are pre-configured image configurations. The image templates page (https://

build.opensuse.org/image_templates) provides a list of these templates. Users can clone these
templates and further configure them as they like.

How you can create your own image templates will be shown here.

149 Editing DoD Repository Sources

https://build.opensuse.org/image_templates
https://build.opensuse.org/image_templates

FIGURE 12.24: OBS TEMPLATES PAGE

12.7.1 Creating Own Image Templates

Create a subproject of your home project.

150 Creating Own Image Templates

FIGURE 12.25: FORM FOR CREATING IMAGE TEMPLATE SUBPROJECT

151 Creating Own Image Templates

Note
Published image templates are fetched via a project's attribute. Any package container
living in a published project will be visible on the image templates page.

Within that project create a new package. That will be your actual image template.

FIGURE 12.26: NEW IMAGE TEMPLATE

152 Creating Own Image Templates

Add the 'KIWI image build' repository to your project. This repository is needed to build KIWI
images in your project. Go to the 'Repositories' tab, click on 'Add repositories' and click on the
'KIWI image build' check box.

FIGURE 12.27: ENABLING THE KIWI IMAGE BUILD REPOSITORY

Add sources for your image configuration.

FIGURE 12.28: OVERVIEW OF SOURCES OF A CUSTOM IMAGE TEMPLATE

153 Creating Own Image Templates

KIWI configurations usually consists of an xml configuration root tarball.

In addition, you can define an icon for your image templates by adding graphical image (for
example, PNG, JPG) to your template sources and name it _icon. If that le exists, it will be
used as icon for your image on the image templates page.

For a full list of image descriptions and general information about building images with KIWI,
see the KIWI project page (https://github.com/OSInside/kiwi) and the KIWI cookbook (https://

osinside.github.io/kiwi/index.html) .

12.7.2 Publishing Image Templates on the Official Image
Templates Page

Once everything is set up and your templates are building, you might want to publish them. In
that case contact the admin of the OBS instance you are using and ask them kindly to do so. If
you happen to use the official OBS (https://build.opensuse.org/) , that would be admin@open-
suse.org.

12.8 KIWI Editor

You can edit the KIWI le associated to your project. It is only possible, at the moment, to edit
the repository list and packages with type image. If you are running your own instance of OBS
be sure you have the kiwi_image_editor feature enabled in your config/feature.yml le.

12.8.1 Accessing the KIWI Editor

Go to your package, and upload a le with the .kiwi extension (for example, test.kiwi), with
valid KIWI content.

154 Publishing Image Templates on the Official Image Templates Page

https://github.com/OSInside/kiwi
https://osinside.github.io/kiwi/index.html
https://osinside.github.io/kiwi/index.html
https://build.opensuse.org/

FIGURE 12.29: EXAMPLE OF A PACKAGE WITH A KIWI XML FILE

155 Accessing the KIWI Editor

Note
You should see now a "Edit KIWI" link (next to "Delete package" link).

Click on the "Edit KIWI" link and you will be redirected to the Editor.

156 Accessing the KIWI Editor

FIGURE 12.30: KIWI EDITOR. SHOW SCREEN

157 Accessing the KIWI Editor

Repositories: Displays the repositories set in the Kiwi le.

Packages: Displays the packages of the package group with type image.

12.8.2 Adding Repositories in the KIWI Editor

To add a new repository click Add repository link and ll in the dialog. There are two ways to
create it:

Basic Mode: Adding the name of a project will provide a list with the repositories from
that project.

FIGURE 12.31: KIWI ADDING A NEW REPOSITORY - BASIC MODE

Expert Mode: This mode provides you with a set of customizable parameters for creating
a repository.

Type: Valid options are rpm-md and apt-deb.

Priority: Repository priority for the given repository.

Alias: Alternative name for the configured repository.

158 Adding Repositories in the KIWI Editor

Source Path: Define the repository path.

User: Specifies a user name for the given repository.

Password: Specifies a password for the given repository.

Prefer License: The repository providing this attribute will be used primarily to install
the license tarball if found on that repository.

Image Include: Specifies whether the given repository should be configured as a repos-
itory in the image.

Replaceable: Defines a repository name which may be replaced by the repositories
specified in the image description. This attribute should only be applied in the context
of a boot image description.

FIGURE 12.32: KIWI ADDING A NEW REPOSITORY - EXPERT MODE

To use the configuration of the current project check the Use project repositories checkbox.

159 Adding Repositories in the KIWI Editor

FIGURE 12.33: KIWI USE PROJECT CONFIGURATION

Note
This option will remove the other repositories from your kiwi le.

12.8.3 Adding Packages in the KIWI Editor

Adding a package is practically the same as adding a repository. We offer an autocomplete for
the package name that will show you the package available in the repositories added previously.

160 Adding Packages in the KIWI Editor

FIGURE 12.34: KIWI ADDING A NEW PACKAGE

Note
The package groups shown in the editor are only those with type image and the packages
will be added in this kind of package group. If it didn't exist previously, the KIWI Editor
creates a package group with type image for you.

12.9 Manage Group

Only administrators and users with Maintainer rights can manage groups. They can add and
remove other users from the group, as well as give them Maintainer rights.

On the Group Members tab, there is a link to Add Member, then enter the name of an existing
user. You can click on the Maintainer checkbox to give Maintainer rights to a user.

161 Manage Group

FIGURE 12.35: MANAGE A GROUP

12.10 Staging Workflow

The Build Service is well known for providing an easy way to build and distribute binary pack-
ages from source code. The packages, grouped together in what we call a project, are built every
time they are updated. The maintainers of the package can choose among a wide range of oper-
ating systems and hardware architectures to build the packages on. Those continuous building
processes ensure that the packages are always working for the different setups.

The maintenance of those packages can be made on a collaborative way via Build Service. As
shown in the following diagram, the maintainers can create a package and then they or any
other developer can branch it (make a copy of it), can do some changes on its code and can
request those changes to be applied on the original package. After that, the maintainers usually
review the request, chat with the developer in case it needs some fixes and end up accepting
the request. Doing so, the new changes to the code become part of the package's source code.

162 Staging Workflow

FIGURE 12.36: STAGING WORKFLOW BASIC SCHEMA

However, the workflow is not always that easy. Apart from managing individual packages, Build
Service provides many other functionalities and it even allows us to release entire distributions.
In a very simplistic way, we can say a distribution is just a Build Service project with thousands
of packages inside. Packages that have been selected to be installed together as part of the
distribution.

When dealing with such a big project, many people request changes in many different packages
all the time. They have to be reviewed, adjusted and tested (built) before being accepted. As
you can imagine, it becomes nonviable to review the packages one by one. Even if the main-
tainers check that a package is not broken and merge it, it can break everything else for conflicts
with other packages. To deal with these situations, Build Service provides what we call Staging
Workflow.

The idea behind the Staging Workflow is testing the requests incrementally by batches. First,
a copy of the original project is created, it is called Staging Project and is going to act as a
playground. The Staging Managers select some of the requests they consider to be belonging
together and assign the corresponding packages to the Staging Project. This way, the groups of
packages are going to be tested (built) in one go. Once the Staging Project gets built, the changes
can be merged to the original project.

The Staging Managers can create as many Staging Projects as they require and can assign dif-
ferent selections of requests to each of them. It is still tedious solving the conflicts that appear
between them, but being able to test a lot of packages in parallel is much more efficient than
doing the same package by package.

163 Staging Workflow

Let's make it clearer with a real example. Imagine we are working on the project openSUSE
Factory and we start working on its Staging Workflow.

Many contributors and maintainers really want some improvements to be applied on their pack-
ages, so the openSUSE:Factory project receives new requests all the time. Among all of them,
there are a few that are related to Gnome packages, so the Staging Managers decide to stage
them together in openSUSE:Factory:Staging:A. The Staging Project is an exact copy of the main
project openSUSE:Factory.

The building process begins and, if something gets broken, the Staging Managers ask the re-
quester to x it. This can add even more requests to the scene but the goal is always getting
a working version of openSUSE:Factory:Staging:A by fixing or even discarding some of the re-
quests. When the building process finishes successfully, the requested changes are merged in
the source code of openSUSE:Factory and some other batches of requests are staged again and
again until we come up with an stable version of openSUSE:Factory ready to be released.

164 Staging Workflow

FIGURE 12.37: STAGING WORKFLOW SCHEMA

165 Staging Workflow

12.10.1 Creating a Staging Workflow

At the moment, it is possible to create a Staging Workflow for any kind of project unless the
project is already one of the Staging Projects.

All the Staging Workflow starts in the tab 'Staging' which can be found on the project's page.
It will take you to the rst step to create a new Staging Workflow or to the dashboard if the
Staging Workflow already exists.

The creation of a Staging Workflow will automatically create two Staging Projects as a subproject
of the main project. Before creating, we need to select a group of managers, they will be in
charge of assigning requests to the Staging Projects and also excluding requests from the Staging
Workflow.

FIGURE 12.38: CREATING A STAGING WORKFLOW FOR OPENSUSE:FACTORY

166 Creating a Staging Workflow

Note
An Admin should previously create the manager groups.

12.10.2 Start Using Staging Workflow

In this view, we can nd all the Staging Projects with an associated request and their current
state.

167 Start Using Staging Workflow

FIGURE 12.39: STAGING WORKFLOW SHOW SCREEN

168 Start Using Staging Workflow

Table content:

Staging Project: Shows the Staging Project name, its overall state (see legend), and the
overall build progress of the packages within the project.

Requests: Show the associated requests and their current state.

Problems: Shows build problems of packages within the project and status problems
reported to the Build Service's Status API by external services like openQA.

Info section:

Managers: Shows the Staging Managers group.

Empty projects: Staging projects without assigned requests.

Backlog: List of requests that can be assigned to a Staging Project.

Ready: List of requests that were in the backlog and have an accepted review.

Excluded: List of requests excluded from this Staging Workflow.

12.10.3 Delete a Staging Workflow

Next to the title, there is a icon that allows us to delete the Staging Workflow.

FIGURE 12.40: STAGING WORKFLOW DELETE ICON

By clicking on the delete icon on the Staging Workflow index page, we are able to delete a
Staging Workflow.

By selecting the associated Staging Projects in the appearing modal window, we are able to
delete them as well. If not selected, they will remain as regular subprojects.

169 Delete a Staging Workflow

FIGURE 12.41: DELETE A STAGING WORKFLOW

12.10.4 Configure a Staging Workflow

Next to the title, there is a link to the Staging Workflow configuration's page.

FIGURE 12.42: STAGING WORKFLOW CONFIGURE ICON

From the configuration page it is possible to delete a Staging Project, create one from scratch or
create a copy of an existent one. But also to change the Managers Group of the Staging Workflow.

170 Configure a Staging Workflow

FIGURE 12.43: CONFIGURING A STAGING WORKFLOW

Note
Changing the Managers Group of a Staging Workflow will automatically unassign the old
group and assign the new group to the related Staging Projects.

12.10.4.1 Create Staging Project from Scratch

Right after the creation of a Staging Workflow, two new Staging Projects are automatically
created and assigned to it: Staging:A and Staging:B. However, it is also possible to create a new
Staging Project from scratch.

171 Configure a Staging Workflow

On the Staging Workflow dashboard, click on configure icon next to the title and then on Create
Staging Project to add a name for the new Staging Project.

FIGURE 12.44: CREATE A NEW STAGING PROJECT

12.10.4.2 Create Staging Project from a Template

It is possible to create a Staging Project from a template. Inside Staging Workflow's configuration
page, simply choose the Staging Project you want to copy from (the template), click on its Copy
icon and add a new name. The Staging Project copy is processed in the background, so there
might be a delay before it shows up.

172 Configure a Staging Workflow

FIGURE 12.45: COPY STAGING PROJECT FROM TEMPLATE

12.10.5 Staging Project

A Staging Project contains requests assigned by a Staging Manager. There is an overview page
for a Staging Project, where you can nd more detailed information about the requests, reviews
and checks.

173 Staging Project

FIGURE 12.46: LOOKING INTO A STAGING PROJECT

174 Staging Project

Obsolete Requests: Requests that were declined, revoked or superseded.

Missing Reviews: Requests with pending reviews.

Building Repositories: List of packages that are still building.

Broken Packages: List of packages with failing builds.

Checks: List of checks of the Staging Project.

All the actions performed on requests that are assigned to the Staging Project are tracked. They
are listed in the 'History' section.

FIGURE 12.47: HISTORY

12.10.6 Working with Requests in Staging Workflow

12.10.6.1 Exclude Requests

Sometimes it can be useful to exclude a request and don't let it be available in the Backlog.
This can prevent the staging project from being assigned with requests we are sure are causing
conflicts, have some missing dependencies or have to wait for other request to be accepted.

By clicking on the 'Excluded' link on the 'Infos' section, it is possible to exclude requests or bring
back already excluded ones.

175 Working with Requests in Staging Workflow

FIGURE 12.48: EXCLUDE REQUESTS

176 Working with Requests in Staging Workflow

13 Basic Concepts and Work Styles

These best practices should be known by every OBS user. They describe how to set up projects
and working with own or foreign sources.

13.1 Setup a project reusing other projects sources
You can also setup your own project using the sources, spec les and patches from another
project and develop within this project.

#osc copypac SOURCEPRJ SOURCEPAC DESTPRJ

By default, Open Build Service will strip the maintainer info and now make it part of your own
project. To clarify, when we speak of a project, it can mean just one package or a complete set
of packages with their own build dependencies.

13.2 Contributing to External Projects Directly
In case a user does not have commit permissions for a project, they can request maintainership
permissions for this project. This makes sense if the user is already known to the project owners
and they trust them as a maintainer. There is a way to do this via the request system of OBS,
but only via osc so far:

osc createrequest -a add_me maintainer PROJECT

13.3 Contributing to Foreign Projects Indirectly
Users who are new to a given project, either because they are new users with Open Build Service
or packaging or do not have any deeper knowledge about a certain project will not have direct
commit permissions. However, they can still create a copy of any package source and ask back
to merge their changes. Open Build Service has support to make this easy.

Wiki reference: User comment page (http://en.opensuse.org/openSUSE:Build_Service_Collabora-

tion)

177 Setup a project reusing other projects sources

http://en.opensuse.org/openSUSE:Build_Service_Collaboration
http://en.opensuse.org/openSUSE:Build_Service_Collaboration

14 How to integrate external SCM sources

Application development usually happens in SCM systems like git, subversion, mercurial and
alike. These external sources can be used directly in OBS via source services. OBS will always
keep a copy of the sources to guarantee that the build sources are still available even when the
external SCM server disappears or get altered.

14.1 How to create a source service
Let OBS create a tar ball out of an SCM repository. This just creates or extend a _service le with
some rules how to download and package sources. The actual work happens on a local build or
on a service side build. Please note that you need the obs-service-obs_scm installed for local runs.

osc add https://SOME_URL.git

The web interface is creating as well a _service le when adding an URL to a SCM system.

14.1.1 Follow upstream branches

The created _service le is set up to follow latest source submissions on each run and looks
like this:

<services>
 <service name="obs_scm">
 <param name="url">https://github.com/FreeCAD/FreeCAD.git</param>
 <param name="scm">git</param>
 </service>

 <service name="set_version" mode="buildtime"/>
 <service name="tar" mode="buildtime"/>
 <service name="recompress" mode="buildtime">
 <param name="file">*.tar</param>
 <param name="compression">xz</param>
 </service>
</services>

178 How to create a source service

This will create an obscpio archive via the obs_scm service with the latest sources. This archive
will get extracted at build time and be processed via the other services to build a compressed tar
ball for rpmbuild. To follow a specific branch and additional parameter for "revision" is needed
for the obs_scm service.

14.1.2 Fixed versions

You may want to build an archive for a xed version, for example an official release which has
been tagged by the upstream project. It is recommend to specify the mode="disabled" and to
submit the archive via the following

osc service runall
osc ar
osc commit

commands.

14.1.3 Avoid tar balls

Tar balls are not a requirement by OBS, but by the packaging tool, for example, rpmbuild.
However, you may want to decide not to ship a tar ball inside of the src.rpm. This makes sense
for large sources where the compression time and needed disk space is just considered a waste
for short living builds and where full source packages are not a requirement. You can simplify
your _service le in that case, but you need to help rpmbuild to work directly in the source. Since
RPM will not include the OBS provided SCM sources in the src.rpm, it is also a good practice to
package the _service le instead of the tar ball to give the user a chance to rebuild the src.rpm as
long the external SCM server is providing the sources. The simplified _service le looks like this:

<services>
 <service name="obs_scm">
 <param name="url">https://github.com/FreeCAD/FreeCAD.git</param>
 <param name="scm">git</param>
 </service>

 <service name="set_version" mode="buildtime"/>
</services>

179 Fixed versions

The spec le needs some hints to build inside the extracted sources directly. The macro can be
used to switch to build tar balls or not to keep it working for stable releases where you want
to provide a complete source RPM.

...
%define build_tar_ball 0
...
%if %{build_tar_ball}
Source0: %{name}-%version.tar.xz
%else
Source0: _service
%endif
...
%prep
%if %{build_tar_ball}
 %setup -q
%else
 %setup -q -n %_sourcedir/%name-%version -T -D
%endif

180 Avoid tar balls

15 Publishing Upstream Binaries

This chapter covers main step of using OBS to publish binaries of your project for multiple
distributions.

15.1 Which Instance to Use?

15.1.1 Private OBS Instance

OBS is open source project and therefore you can set up your own instance and run it by your
own. The main advantage of this approach is that you can keep all your sources and build recipes
unpublished if you need to (for example because of NDA). Obvious downside of this approach is
that you need to maintain your own server/servers for running builds, publishing and mirroring.
Also making your project public may attract some potential contributors.

More information about setting up your own private OBS instance can be found in Book “Admin-

istrator Guide”, Chapter 7 “Setting Up a Local OBS Instance” .

15.1.2 openSUSE Build Service

Other option is to use some publicly available instance of OBS. One good example is openSUSE
Build Service at http://build.opensuse.org . This OBS instance can be used by anybody to freely
create binaries for any of the supported distributions. Big advantage is that somebody is already
taking care of all the infrastructure. You can store your sources there, build your packages and
got them mirrored around the world. You do not need to get your own server and configure it,
you can start using it right away.

15.2 Where to Place Your Project

This part helps you to decide on how to name and where to place your project and what project
structure to create. This is more important if you are sharing your OBS instance with other
people like in openSUSE Build Service (http://build.opensuse.org) .

181 Which Instance to Use?

http://build.opensuse.org
http://build.opensuse.org

15.2.1 Base Project

If there are more packages in OBS, like for example in openSUSE Build Service (http://build.open-

suse.org) , these packages needs to be somehow divided into projects so it is easier to nd what
people are looking for and it is not all just one big mess.

In openSUSE Build Service, packages are divided into categories regarding their function. MySQL
is in server:database repository, lighttpd in server:http and for example KMyMoney has its own
subproject in KDE:Apps. So it is a good idea to think about in what category available on the
OBS your application will t the best.

If you need whole project for yourself - for example some of your dependencies is being built
in the same project, you need to request creating subproject. In openSUSE Build Service, this
is done through asking OBS admins for it on buildservice mailing list (mailto:buildservice@open-

suse.org) . Its archive and link for subscribing can be found at https://lists.opensuse.org/man-

age/lists/buildservice.lists.opensuse.org/ .

If you need to just put your package somewhere, you can create it in your home project and
then send submitrequest to the project you want your package to get included in.

15.2.2 Supporting Additional Versions

If you want to support more than one version of your program, you need to use several projects.
The same package cannot be contained in the same project multiple times.

15.2.2.1 Stable and Development Versions

Let's assume that you have found project suitable for your program. Some projects already have
something like STABLE and UNSTABLE subprojects. So you can use these, if you discuss it with
maintainers of these project. Other way is to ask somebody from the maintainers of the project to
create either these subprojects (if they do not exist) or something similar. Always try to discuss
it with the maintainers of the project. They might have good ideas, suggestions and may help
you in various ways.

182 Base Project

http://build.opensuse.org
http://build.opensuse.org
mailto:buildservice@opensuse.org
mailto:buildservice@opensuse.org
https://lists.opensuse.org/manage/lists/buildservice.lists.opensuse.org/
https://lists.opensuse.org/manage/lists/buildservice.lists.opensuse.org/

15.2.2.2 Multiple Stable Versions

If you want to support multiple version, you would need more projects than just two as suggested
in previous section. These special projects should contain versions they are supposed to support
in their name. If you are creating them under some project you are sharing with other packages,
having you package name in the name of projects is a good idea as well.

GNOME is a good example: There is the GNOME project and many subprojects. Among them
are, for example, GNOME:STABLE:2.30, GNOME:STABLE:2.32, and GNOME:STABLE:3.0. These
projects hold different stable versions of GNOME with latest fixes.

15.3 Creating a Package

Packaging is quite a complex topic. Instead of trying to cover it in this book, it is a good idea
to start with available internet documentation. One of the recommended online resource is
Portal:Packaging on openSUSE wiki. You can nd it at http://en.opensuse.org/Portal:Packaging .
It contains links to several packaging tutorials and other packaging related documentation.

15.4 Getting Binaries

Note
The following sections discuss feature available only in openSUSE Build Service—a freely
available instances of OBS.

For a nice download page for your software published on openSUSE Build Service, use the
openSUSE download page. You can include it for example using either iframe or object
on newer websites. An example of download page can be following one http://software.open-

suse.org/download.html?project=openSUSE:Tools&package=osc . You can see how it looks like
in Figure 15.1, “openSUSE download page for package from OBS”. It contains links to the packages
and instructions how to install them.

183 Creating a Package

http://en.opensuse.org/Portal:Packaging
http://software.opensuse.org/download.html?project=openSUSE:Tools&package=osc
http://software.opensuse.org/download.html?project=openSUSE:Tools&package=osc

FIGURE 15.1: OPENSUSE DOWNLOAD PAGE FOR PACKAGE FROM OBS

URL always has to start with http://software.opensuse.org/download.html? .You can attach any
number of &-separated parameters. But at least two of them - project and package - are required.
All parameters with descriptions can be found in Table 15.1, “Parameters for Download Page”.

TABLE 15.1: PARAMETERS FOR DOWNLOAD PAGE

parameter description

project Project in which your package is located

package Name of your package as it is specified in
OBS

bcolor Background color in hex (for example bcol-
or=004) to make the download page better
match your project page

fcolor Text color in hex (for example fcolor=fff)
to make the download page better match
your project page

acolor Link color in hex (for example acolor=f-
f0) to make the download page better match
your project page

184 Getting Binaries

http://software.opensuse.org/download.html?

parameter description

hcolor Highlight color in hex (for example hcol-
or=0ff) to make the download page better
match your project page

15.4.1 Examples

Now we will take a look at how to include the download page into your project pages. As an
example, we will use the osc client from the openSUSE:Tools project. To demonstrate the colors
change, we will use theme that would match Midnight Commander.

First we will start with recent web page supporting new standards. On such a website, we would
use object to include download code:

<object type="text/html"
 data="http://software.opensuse.org/download.html?
project=openSUSE:Tools&package=osc&bcolor=004&acolor=ff0&fcolor=fff&hcolor=0ff"
 width="100%" height="100%">
 <param name="src"
 value="http://software.opensuse.org/download.html?
project=openSUSE:Tools&package=osc&bcolor=004&acolor=ff0&fcolor=fff&hcolor=0ff" />
 Your browser doesn't support objects, please continue to the
 <a href="http://software.opensuse.org/download.html?
project=openSUSE:Tools&package=osc&bcolor=004&acolor=ff0&fcolor=fff&hcolor=0ff">
 download page
</object>

If you are using PHP on your server, you can make it easier by using following code:

<?php
 $url = "http://software.opensuse.org/download.html?
project=openSUSE:Tools&package=osc&bcolor=004&acolor=ff0&fcolor=fff&hcolor=0ff";
 echo '
<object type="text/html"
 data="' . $url . '"
 width="100%" height="100%">
 <param name="src"
 value="' . $url . '" />
 Your browser doesn't support objects, please continue to the
 download page
</object>
';
?>

185 Examples

If you are running some legacy website, you might have to use iframe :

<iframe src="http://software.opensuse.org/download.html?
project=openSUSE:Tools&package=osc&bcolor=004&acolor=ff0&fcolor=fff&hcolor=0ff"/>

186 Examples

16 Bootstrapping

This chapter explains Boot strapping. In this chapter, You would learn how you could have other
OBS projects and packages to your local OBS instance after your OBS install. There are some
useful OSC commands examples and OBS working mechanism explanation in this chapter also.
Basically this chapter is a copy from Build Service portal. For information about OBS bootstrap-
ping on the Build Service portal, see https://en.opensuse.org/openSUSE:Build_Service_private_in-

stance_boot_strapping .

16.1 The Issue
If you create a private instance of an OBS it is likely to be fully independent. This means that your
OBS needs to build its full reference tool chain. This process—called bootstrapping—presents
the same problem as the Chicken and the Egg, which one came rst! In other words, you need
to create a tool chain with the tool chain that you want to create.

16.2 A Cheat Sheet

16.2.1 Creating Your First Project

Log on to the Web API. The default user Admin, with the password opensuse is available. Create
your own login and password and set yourself as Admin. Log on to the Web UI as Admin and
click on the icon Configuration and add the openSUSE Build Service as the remote instance.
Select from under Locations Projects. At the end of the list, click Add Project. Give it a name
(e.g. Meego-test) Select your new project and create a sub-project 0.1. You have now a project
Meego-test:1.0 Sub projects are handy to propagate Access Control Lists (acl) and for creating
the version as a sub project simplifies the user and project administration.

16.2.2 Importing Your Base Linux Project

We are now going to import the base project. I will describe two methods, one where you have
a login on a remote OBS instance, one where you have only access to the rpm repository. In
both cases you will need access to binary and source rpm.

187 The Issue

https://en.opensuse.org/openSUSE:Build_Service_private_instance_boot_strapping
https://en.opensuse.org/openSUSE:Build_Service_private_instance_boot_strapping

16.2.2.1 With a login on a remote OBS

The osc copypac (I assume that you have installed the osc package on your workstation) has an
option -t which enables copying towards a remote target OBS instance. osc help and osc help
command will advise on how to use these. First you need to import the project configuration.

$ export PROJECT=MeeGo-test:0.1
$ osc -A http://api-url-source-obs meta prjconf $PROJECT > my_project.conf
$ osc -A http://api-url-target-obs meta prjconf -F my_project.conf $PROJECT

Then import the project. As you might have some Links in the project that you import, it is a
good idea to keep the source and target project names identical.

$ PRJ=ProjectToCopy; for i in `osc -A http://api.source.obs.domain ls $PRJ`; do \\
osc -A http://api.source.obs.domain \\
copypac -t http://api.target.obs.domain $PRJ $i $PRJ ;done

16.2.2.2 Without a Login on a Remote OBS

If you have access only to the repositories of your source reference target, then your life will
be a bit more difficult. My advice would be to recheck if you nd you cannot get a login on a
public OBS service - such as provided by openSUSE or MeeGo - before proceeding this way. You
will not be able to import the project config and you will have to create it by hand. This is too
long to be covered in this HowTo. For more explanation about Build Service project config, see
http://en.opensuse.org/openSUSE:Build_Service_prjconf .

Then you need to download all your rpm source on to a local machine and import it into your
project with the command.

$ osc importsrcpkg

16.2.2.3 Bootstrapping

To initiate the build process, we will copy the rpm binary from the source OBS of the source
project. These binary RPMs, from which we will remove any reference to release and version,
will be used to trigger the rst build. The OBS appliance will recompile all the RPMs until
all RPMs in the project have been compiled only with packages compiled from their source
code. Some base packages (e.g. tool chains) will be compiled several times during that process.
Alternatively, you can at rst build against a target which is similar to the base that you need

188 Importing Your Base Linux Project

http://en.opensuse.org/openSUSE:Build_Service_prjconf

to bootstrap in lieu of building against your own base and change the build reference to your
bootstrap base once that the rst build has been successful. Remember that you can also build
against remote baseline. Double check that the preliminary step have been executed correctly.
You must have already: copied a Linux base distribution in an OBS project defined a build target
for that base project.

If you have not defined a build target, the necessary directory structure will not exist. This is
a mandatory step of preparation. Stop the scheduler as it will create a mess if the system is
not stable:

rcobsscheduler stop

* Add binaries to the :full directory of the Project ssh onto the OBS server. Now go to the project’s
build directory, and create a directory called “:full”. Note : standard is the default name of your
Build repository as defined in your project. It might change depending on who created the initial
build repo.

cd /obs/build/$PROJECT/standard/i586

This directory structure should already exist. If not, there is a problem (note that /obs is
link and the target may vary with your implementation). Now create the “:full” directory. $
mkdir :full Copy over all the binary RPMs of the project you are trying to build from scratch.
These RPMs should have the release and version numbers stripped from them. e.g. alsa-util-
s-1.0.22-2.7.i586.rpm -- should be – alsa-utils.rpm Note : If the original project has a :full di-
rectory you can copy from there to avoid the issue of stripping version and release numbers. *
Add binaries to the :full directory of the Project. Change all user/group privileges under /srv/
obs/build/ to “obsrun”

chown -R obsrun:obsrun /srv/obs/build

If you leave root as owner of :full, it will still build but the scheduler will fail (almost silently)
to upgrade :full with the latest built packages. Except in very special cases, it is very unlikely
that you want to do so. * Start the OBS scheduler

rcobsscheduler start

* Force the obs to reindex your new :full directory. It will send an event to the scheduler which
will create a le named :full.solv

obs_admin --rescan-repository $OBS-PROJECT $REPO $ARCH

189 Importing Your Base Linux Project

16.2.2.3.1 Troubleshooting

At that time you should see your project restarting to build. If that would not be the case. *
check that your les in your target :full directory are all own by the user obsrun. The following
command should not return any le name.

#find /obs/build ! -user obsrun
#chown -R obsrun:obsrun /obs/build (will correct ownership issue)

* Force the obs to reindex your new :full directory. It will create a le named :full.solv

$obs_admin --rescan-repository $OBS-PROJECT $REPO $ARCH

* Check that your rpm are valid (e.g. not damaged during transfer)

#cd /obs/build/$PROJECT/standard/i586:full
#for I in `ls *.rpm` ; do rpm -qlp $I >/dev/null; if [$? -ne 0] ;then echo $I >>../
error.lst ; fi ; done
#cat ../error.lst (must be empty, all rpm in error needs re-installation)

* Still not working, get a look in the log les in the directory /obs/log. You can start by having a
look at /obs/log/scheduler_TARGET_ARCH.log and search from the end for the string "expand-
ing dependencies". You will nd from there why the scheduler fails.

#tail -f /obs/log/scheduler_i586.log

16.3 Creating a First Project
After creating a dedicated user via the Web API, log onto the Web UI again with your new
login. Open your home project and create a sub project called "MyTest". To add a package in
your new Home project, simply create a link [link Package from other Project] with one of
the packages recently copied in your new OBS instance (see previous chapter Import your base
project). Pick up a small one to speed compilation time. Click on the "+" near Build Repositories
to add a repository. Move to the end of the page where all the standard Linux distributions are
listed and click on [Advance]. Give a name to your repo, e.g. my-test and pick from the list the
project/repo that you have just imported and rebuilt. This will request the OBS to build your
new Home project against that repository. You can now check out your Home project with the
osc command, modify a le or two and at your next check-in, the OBS will rebuild your Home
project. If your reference project changes, the OBS will also rebuild your Home project.

190 Creating a First Project

17 osc Example Commands

This chapter explains and shows OSC commands examples. You could use OBS much more
efficiently with OSC commands. $man OSC will show you [GLOBALOPTS], SUBCOMMAND,
[OPTS][ARGS....]. You also could nd some OSC commands examples from OBS Build Service
portal. This chapter will take every OSC command examples from OBS Build Service portal and
describes it in here. You could visit Build Service portal OSC command explanation at https://

en.opensuse.org/Build_Service/CLI .

17.1 Package Tracking
With osc it is also possible to manage packages in a SVN like way. This feature is called package
tracking and has to be enabled in ~/.oscrc's [general] section

manage your packages in a svn like way
do_package_tracking = 1

Add a new package to a project

osc mkpac [package]

Add an already existing directory and its les to a project

osc add [directory]

Remove a package and its les from a project

osc deletepac [package]

All the commands above only change your local working copy. To submit your changes to the
buildservice you have to commit them (osc ci -m [message]). The status command also displays
the state of the packages

osc st

191 Package Tracking

https://en.opensuse.org/Build_Service/CLI
https://en.opensuse.org/Build_Service/CLI

18 Advanced Project Setups

These best practices describe more complex setups, for example how to rebuild an entire stack
with minimal effort.

18.1 Rebuilding an Entire Project with Changes

18.2 Integrating Source Handling

18.3 Using OBS for Automated QA

192 Rebuilding an Entire Project with Changes

19 Building Kernel Modules

193

20 Common Questions and Solutions

This currently an unsorted list of asked questions.

20.1 Working with Limited Bandwidth
Packages can contain large les, esp. some tar balls can become quite large, in some real life
examples several hundred mega bytes. This can be a problem when you need to work on the
package via a slow connection.

20.1.1 Using the Web Interface

The web interface is the easiest way to edit simple things without the need of the checkout.

Disadvantages are

Not the preferred solution for power packagers

No local build possible

Still a significant bandwidth is needed compared to the size of the edited le.

20.1.2 Using osc with Size Limit

osc offers to skip les with a certain size (specified with -l switch) on checkout. The limit is
stored locally and you can also run an update later without downloading any large les. All
other les can be edited, died and committed as usual.

Disadvantages are

The checkout is incomplete

No local build possible

20.1.3 Using download_url
Manage your large les via source services. The easiest way is to use osc add $URL which
just stores a small _service le. The check will not contain the large les by default, but they
get downloaded when needed via the service. However, they will never get committed, so this

194 Working with Limited Bandwidth

is the best approach when you have a fast downstream, but slow upstream like with standard
DSL connections. Also other users can trust your tar ball, esp. important when you do version
upgrades on foreign packages.

Disadvantages are

The generated les have the _service: prefix in check out (but not during build).

20.1.4 Using Source Services in trylocal Mode

Manage your large les via source services in try local mode for example with download_url or
download_files service. This means you can be flexible depending on your current connection
without changing the setup. The service is generating the le on the server side when you decide
not to commit it, but you can also decide to commit it and avoid the _service: prefix on the
les. Also other users can trust your tar ball, esp. important when you do version upgrades on
foreign packages.

Disadvantages are

A checkout may still need the size limit switch when last commit contained the large les.

195 Using Source Services in trylocal Mode

VI Reference

21 OBS Architecture 197

22 OBS Concepts 202

23 Build Process 212

24 Build Containers 215

25 Source Management 219

26 SCM Bridge 221

27 Supported Formats 225

28 Request and Review System 229

29 Image Templates 234

30 Multiple Build Description File Handling 236

31 Maintenance Support 238

32 Binary Package Tracking 249

33 Scheduling and Dispatching 252

34 Build Constraints 256

35 Building Preinstall Images 270

36 Authorization 271

37 Quality Assurance(QA) Hooks 274

21 OBS Architecture

21.1 Overview Graph
Open Build Service (OBS) is not a monolithic server; it consists of multiple daemons that fulfill
different tasks:

FIGURE 21.1: SIMPLIFIED OBS COMPONENT OVERVIEW

The OBS Backend manages the source les and build jobs of the OBS.

Source Server

Maintains the source repository and project/package configurations. It provides an HTTP
interface, which is the only interface for the Front-end and It may forward requests to
further back-end services.
The Source Server keeps track of all sources that are available for building. It takes care
of le deduplication so that every source le is stored only once. This is done by keeping
track of the MD5 hashes of the les in combination with the le names. All revisions of
committed sources are stored and will not be deleted. This guarantees the ability to get
the source for every delivered binary package.
Each OBS installation has one Source Server only. It maintains the "sources", "trees" and
"projects" directories.

197 Overview Graph

Repository Server

A repository server provides access to the binaries via an HTTP interface. It is used by the
front-end via the source server only. Workers use the server for registration, requesting the
needed binaries for the build jobs and storing the result. Notifications for schedulers are
also created by repository servers. Each OBS installation has at least one repository server.
A larger installation using partitioning has one on each partition.

Scheduler

A scheduler calculates the need for build jobs. It detects changes in sources, project con-
figurations or in binaries used in the build environment. It is responsible for starting jobs
in the right order and integrating the built binary packages. Each OBS installation has one
scheduler per available architecture and partition. It maintains the content of the "build"
directory.

Dispatcher

The dispatcher takes a job (created by the scheduler) and assigns it to a free worker.
It also checks possible build constraints to verify that the worker qualifies for the job.
It only notifies a worker about a job; the worker downloads the needed resources itself
afterwards. Each OBS installation has one dispatcher per partition, one of which is the
master dispatcher.
The dispatcher tries to assign jobs fairly between the project repositories. For this the
dispatcher maintains a load per project repository (similar to the Unix system load) of
used build time. The dispatcher assigned jobs to build clients from the repository with
the lowest load (thereby increasing its load). It is possible to tweak this mechanism via
dispatching priorities assigned to the repositories via the /build/_dispatchprios API call
or via the dispatch_adjust map in the BSConfig.pm configuration le. See the dispatch
priorities in reference guide for more details.

Publisher

The publisher processes publish events from the scheduler for finished repositories. It
merges the build result of all architectures into a defined directory structure, creates the
needed metadata, and may sync it to a download server. It maintains the content of the
"repos" directory on the back-end. Each OBS installation has one publisher per partition.

Signer

The signer handles signing events and calls an external tool to execute the signing. Each
OBS installation usually has one signer per partition and also on the source server instal-
lation.

198 Overview Graph

Source Service Server

The Source Service Server helps to automate processes for continuous integration. The
server can call different services for different tasks. It can download sources from websites
and version control systems such as subversion and git. Services can also include working
on the source to extract spec-les from archives, repacking the archives or adjusting version
numbers in spec les. It is also often used to enforce policies by running checks. A failed
check will appear as broken source and blocks a package from building.
The Source Service Server is optional and currently only one Source Service Server is
supported.

Download on Demand Updater (dodup) (OBS version 2.7 or later)

The download on demand updater monitors all external repositories which are defined as
download on demand resources. It polls for changes in the metadata and re-downloads the
metadata in case. The scheduler will be notified to recalculate the build jobs depending on
these repositories afterwards. Each OBS installation can have one dodup service running
on each partition.

Delta Store (OBS version 2.7 or later)

The delta store daemon maintains the deltas in the source storage. Multiple obscpio
archives can be stored in one deltastore to avoid duplication on disk. This service calcu-
lates the delta and maintains the delta store. Each OBS installation can have one delta
store process running next to the source server.

Worker

The workers register with the repository servers. They receive build jobs from the dispatch-
er. Afterwards they download sources from the source server and the needed binaries from
the repository server(s). They build the package using the build script and send the result
back to the repository server. A worker can run on the same host as the other services, but
most OBS installations have dedicated hardware for the workers.

21.2 Communication Flow

The communication ow can be split into the following major parts:

1. communication between users and front-end

2. communication between front-end and source server

199 Communication Flow

3. communication between source server and other back-end components, in particular the
repository servers.

4. communication between the back-end and the stage server to publish build results

The user uses the front-end (via tools like osc) to communicate with the Open Build Service. The
front-end is providing a web interface and also an API. The front-end is implemented as a Ruby
on Rails application. All communication happens via the HTTP protocol (usually encrypted,
meaning HTTPS is used).

The communication between the front-end and the back-end also uses the HTTP protocol, using
the back-end source server as the gateway to most other back-end components.

FIGURE 21.2: OBS COMMUNICATION (SIMPLIFIED)

200 Communication Flow

The figure Figure 21.2, “OBS Communication (Simplified)” shows the communication ow between
the OBS components if a package source (for example, a _service le) was updated:

1. The new source le is uploaded with an HTTP PUT operation to the front-end. The front-
end authenticates and checks the permissions of the user.

2. If the user has appropriate permissions, the new le will be sent to the back-end source
server via an HTTP PUT request. The source server stores the changed source under re-
vision control.
It then checks whether this change makes source service runs necessary. If so, the source
service server is informed via an HTTP PUT request of the _service le to run the re-
quested services.

3. The source service server runs all required source services. For example, it could down-
load the requested revision from a Git server. After running all services, it delivers the final
sources back to the source server, which then stores these under revision control.

4. The source server then notifies the schedulers for each hardware architecture required
about the change of the package via an event.

5. The scheduler then recalculates package and project state. If all build requirements are
fulfilled, a build job is created and added to the job pool.

6. The dispatcher is notified and selects a free worker which meets the build constraints for
the job and sends the job to it.

7. The worker downloads the sources from the source server and all required binary pack-
ages from the repository server. The package then will be built.
The worker is monitored by the warden service to detect any worker crashes.

8. If the build succeeds, the build results (including build logs) are uploaded to the scheduler.
If requested, the signer signs the packages.

9. The scheduler recalculates the project status, checking whether dependent packages need
to be rebuilt. If not, it requests the publisher to publish the build results.

10. The publisher will create an updated version of the output repository and request the
signer to sign the repository metadata.

201 Communication Flow

22 OBS Concepts

We describe here the high-level concepts: how Open Build Service is designed, manages its
content and is supposed to work.

22.1 Project Organization

All sources and binaries which are hosted inside of OBS are organized into projects. A project
is the container defining a larger task. It defines who is working there.

22.1.1 Project Metadata

A project is configured in the project /source/$PROJECT/_meta path. It can be edited in the
web interface using the RAW Config tab or via command line with

osc meta prj -e $PROJECT

This le contains:

Generic description data in title and description elements.

An ACL list of users and groups connected with a role. The maintainer role defines the
list of users permitted to commit changes to the project.

A number of ags controlling the build and publishing process and possible read access
protections.

A list of repositories to be created. This list defines what other repositories should be used,
which architectures shall be built and build job scheduling parameters.

The following ags can be used to control the behavior of a package or project. Most of them
can also be limited to specified repositories or architectures.

202 Project Organization

build defines whether package sources should get built. If enabled, it signals the scheduler
to trigger server-side builds based on events like source changes, changes of packages
used in the build environment or manual rebuild triggers. A local build via CLI is possible
independent of this ag. Default is enabled.

publish can be used to enable or disable publishing the build result as repository. This
happens after an entire repository has finished building for an architecture. A publish also
gets triggered when the publish ag is enabled after a repository finishes the build. Default
is enabled.

debuginfo can be used to modify the build process to create debuginfo data along with the
package build for later debugging purposes. Changing this ag does not trigger rebuilds,
it just affects the next build. Default is disabled.

useforbuild is used to control if a built result shall be copied to the build pool. This means
it will get used for other builds in their build environment. When this is disabled, the build
has no influence on builds of other packages using this repository. In case a previous build
exists the old binaries will be used. Disabling this ag also means that "wipe" commands
to remove binary les will have no effect on the build pool. Changing this ag does not
trigger rebuilds, it just affects the next build. Default is enabled.

access ag can be used to hide an entire project. This includes binaries and sources. It
can only be used at project creation time and can just be enabled (making it public again)
afterwards. This ag can only be used on projects. Default is enabled.

sourceaccess ag can be used to hide the sources, but still show the existence of a project
or package. This also includes debug packages in case the distribution is supporting this
correctly. This ag can only be used at package creation time. There is no code yet which
checks for possible references to this package. Default is enabled.

downloadbinary permission still exists like before. However, unlike "access" and
"sourceaccess" this is not a security feature. It is just a convenience feature, which makes it
impossible to get the binaries via the API directly. But it is still possible to get the binaries
via build time in any case. Default is enabled.

22.1.2 Project Build Configuration

A project is configured in the project /source/$PROJECT/_config path. It can be edited in web
interface in the Project Config tab or via one of the following command lines

203 Project Build Configuration

osc meta prjconf -e $PROJECT
osc co $PROJECT _project

The build configuration is used to tell the OBS how to set up the build environment, and is
explained in Chapter 4, Build Configuration.

22.1.3 Project Build Macro Configuration

The macro configuration is part of the build configuration in /source/$PROJECT/_config. It
can be added at the end after a Macros: line.

The build configuration is used to tell the OBS how to set up the build environment, and is
explained in Chapter 4, Build Configuration. Within that chapter, build macros are explained in
Section 4.4, “Macro Definitions in the Build Configuration”.

22.1.4 An OBS Package

An OBS Package is a sub-namespace below a project. It contains the specification of a single
package build for all specified repositories.

22.2 The OBS Interconnect

The OBS interconnect is a mechanism to connect two OBS instances. All content, including
sources and binary build results, will be available in the connecting instance. Unlike other meth-
ods the instances will also notify each other about changes.

204 Project Build Macro Configuration

22.3 Download on Demand Repositories (DoD)

22.3.1 Motivation

In a DoD repository external software repositories can be configured which are used for depen-
dency resolution and where packages will be downloaded at build time. A DoD repository has
some main advantages in comparison to binary import projects:

less disk usage as only really required packages will be downloaded

automatic package updates when new upstream releases are available

simple to configure in project meta with no for shell access to repo servers

In download repotypes where package checksums can be verified (e.g. susetags, rpmmd and
deb), we recommend that you use a mirror server URL in <download> in order to reduce traffic
on the master server and configure a <master> with an https url and a sslfingerprint in
order to avoid man in the middle attacks by peer verification.

22.3.2 XML Document Hierarchy

<project>
 <repository>
 <download>
 <master/> (optional)
 <pubkey/> (optional)
 </download>
 </repository>
</project>

22.3.3 The Daemon

The bs_dodup daemon periodically checks for new metadata in remote repositories. This daemon
can be enabled for startup with the command

systemctl enable obsdodup.service

and can be started with

205 Download on Demand Repositories (DoD)

systemctl start obsdodup.service

22.3.4 The download Element

mandatory attributes:

arch

url

repotype

22.3.5 The master Subelement

The <master> tag as shown in the rpmmd example below is optional but strongly recommended
for security reasons.

Verification is supported in the following repotypes

susetags

rpmmd

deb

This option could be defined by any valid URL (HTTP and HTTPS) to the origin of the repository
but it is strongly recommended to use https with a sslfingerprint to bs_dodup possibility to
verify its peer in order to avoid man-in-the-middle attacks. The download URL can be a mirror
as we validate package checksums found in repo data.

You can easily query the SSL fingerprint of a remote server with the following command:

openssl s_client -connect <host>:<port> < /dev/null 2>/dev/null | openssl x509 -
fingerprint -noout

22.3.6 The pubkey Subelement

The pubkey element contains one or more GPG public keys in order to verify repository infor-
mation but not packages. For an example, look at the repotype "deb" documentation below.

206 The download Element

22.3.7 Repository Types

22.3.7.1 YAST Sources (susetags)

Example:

<project name="My::SuSE::CD">

 [...]

 <repository name="standard">
 <download arch="x86_64" url="http://mirror.example.org/path/to/iso"
 repotype="susetags" />
 <download arch="i586" url="http://mirror.example.org/path/to/iso"
 repotype="susetags" />
 <arch>x86_64</arch>
 <arch>i586</arch>
 </repository>
</project>

22.3.7.2 RPM Sources (rpmmd)

Example:

<project name="Fedora:Rawhide">

 [...]

 <repository name="standard">
 <download arch="x86_64" url="http://mirror.example.org/fedora/rawhide/x86_64/os"
 repotype="rpmmd">
 <master url="https://master.example.org/whereever/fedora/rawhide/x86_64/os"
 sslfingerprint="sha256:0a64..0303"/>
 </download>
 <download arch="i586" url="http://mirror.example.org/fedora/rawhide/i386/os"
 repotype="rpmmd">
 <master url="https://master.example.org/whereever/fedora/rawhide/i386/os"
 sslfingerprint="sha256:0a64..0303"/>
 </download>
 <arch>x86_64</arch>
 <arch>i586</arch>
 </repository>
</project>

207 Repository Types

22.3.7.3 Apt Repository (deb)

Apt supports two repository types, at repositories and distribution repositories.

The download url syntax for them is:

<baseurl>/<distribution>/<components>

<at_url>/.[/<components>]

You can specify multiple components separated by a comma.

An empty components string is parsed as "main".

Example:

<project name="Debian:8">

 [...]

 <repository name="ga">
 <download arch="x86_64" url="http://ftp.de.debian.org/debian/jessie/main"
 repotype="deb">
 <pubkey>
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.12 (GNU/Linux)

[...]

 </pubkey>
 </download>
 <download arch="i586" url="http://ftp.de.debian.org/debian/jessie/main"
 repotype="deb">
 <pubkey>
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.12 (GNU/Linux)

[...]

 </pubkey>
 </download>
 <arch>x86_64</arch>
 <arch>i586</arch>
 </repository>
</project>

208 Repository Types

22.3.7.4 Arch Repository (arch)

Be aware that there is currently no way to verify the origin of repository for Arch.

Example:

<project name="Arch:Core">

 [...]

 <repository name="standard">
 <download arch="x86_64" url="http://ftp5.gwdg.de/pub/linux/archlinux/core/os/x86_64"
 repotype="arch"/>
 <download arch="i586" url="http://ftp5.gwdg.de/pub/linux/archlinux/core/os/i686"
 repotype="arch"/>
 <arch>x86_64</arch>
 <arch>i586</arch>
 </repository>
</project>

22.3.7.5 Mandriva Repository (mdk)

Example:

<project name="Mageia:5">

 [...]

 <repository name="standard">
 <download arch="x86_64" url="http://mirror.example.org/Mageia/distrib/5/x86_64/media/
core/release" repotype="mdk"/>
 <download arch="i586" url="http://mirror.example.org/mirrors/Mageia/distrib/5/i586/
media/core/release" repotype="mdk"/>
 <arch>x86_64</arch>
 <arch>i586</arch>
 </repository>
</project>

209 Repository Types

22.4 Integrating External Source Repositories

22.4.1 Motivation

This chapter makes some recommendations how upstream resources can be integrated into the
build process. SCM stands for source control management. git, subversion or CVS are concrete
implementations of an SCM. The OBS itself comes also with an own SCM, but this is only intend-
ed to manage the les needed for packaging. However, you can add references to external SCM
systems. The source service system will mirror the sources and provide it to the build systems.
OBS makes sure that you can access the sources of all builds also in the future, even when the
upstream server delivers different or no content at all anymore. Using external SCM references
has the following advantages:

It is documented where a source comes from and how to create the archive.

Working on the upstream sources can be done directly in local checkouts and changes can
be tested via local builds before pushing to the SCM server.

The sources can be stored incrementally and need less storage on the server.

22.4.2 Creating an Reference to an External SCM

External references are defined in _service les. The le can look like this:

<services>
 <service name="obs_scm">
 <param name="url">git://...</param>
 <param name="scm">git</param>
 </service>
 <service name="tar" mode="buildtime"/>
 <service name="recompress" mode="buildtime">
 <param name="file">*.tar</param>
 <param name="compression">xz</param>
 </service>
 <service name="set_version" mode="buildtime" />
</services>

210 Integrating External Source Repositories

The services do the following:

obs_scm: mirrors the source. It stores it as a cpio archive, but for the build process this
looks like a directory. It also stores additional information from the metadata to a le with
obsinfo suffix.

tar: creates a tar le from the directory

recompress: applies a compression on the tar le

set_version: reads the version from the obsinfo le and adapts the build descriptions to it.

Note that only the rst service (obs_scm) runs on the OBS server. The other services run during
the build process. They can also be replaced by any user by providing alternative implementa-
tions of them, or by writing their own service from scratch.

22.4.3 Working with Local Checkouts

Using osc build in any package with such a definition will do the same process locally. The
only difference is that you get a local subdirectory with the SCM content. You can go inside and
work as you are used to. Any changes inside will be used for your next local build, whether they
were pushed to the upstream server or not. However, you need to push it upstream when you
let the OBS server re-fetch the changes from upstream. The only way out would be to set the
obs_scm service to mode disabled and upload your local archive.

22.4.4 Managing Build Recipes in a SCM

The obs_scm service allows you to export les next to the archive. You can specify one or more
les using the extract parameter. Use it for your build recipe les.

211 Working with Local Checkouts

23 Build Process

The build process creates new binaries from sources, binaries, and config. This process may
run on the OBS server side or on a local workstation. Each package build is created in a fresh
environment. This is done to ensure that the environment is reproducible.

23.1 Phases of a Build Process
All sources and binaries which are hosted inside Open Build Service are organized in projects.
Projects host sources inside of OBS packages. The sources are built according to the repository
configuration inside of the project.

23.1.1 Preinstall Phase

This phase depends on the type of the buildroot (building environment). OBS supports multiple
types of build environments, for example:

chroot

Xen

KVM

Qemu

In the preinstall phase, the OBS Worker creates a small base system from the packages declared
to be preinstalled (le system, coreutils, binutils, rpm/debutils, etc.). The tools installed in this
phase must only provide the minimum functionality necessary to allow installing further pack-
ages. In addition it copies all necessary build requirements and the source into the base system.

23.1.2 Install Phase

Depending on the chosen build environment, the worker may start a virtual machine, an em-
ulator or just enter the build root. If this was successful, the install phase reinstalls all base
packages from above and additionally all packages you have defined in your build recipe plus
dependencies. After this phase the environment is ready to process the build recipe.

212 Phases of a Build Process

23.1.3 Package Build

Depending on the type of package, the build environment executes different build commands,
for example:

RPM-based distributions: rpmbuild

Debian-based distributions: dpkg-buildpackage

Arch Linux: pacman

Kiwi image: kiwi.

How the build continues depends on the quality and the type of your build recipe. In most cases,
the source code will be compiled now and then be packed into the chosen package format.

To improve package quality, on RPM-based distributions there are additional checks provided
via packages. A common toolchain for handling checks is for example rpmlint.

23.1.4 After the Build

The generated packages are extracted from the build environment and transferred back to the
server by the worker. The build result might be postprocessed by followup build jobs. Afterwards
the resulting les may get signed.

23.2 Identify a build
OBS is usually tagging each build with an identifier. This can be used to nd the building OBS
instance, the project, repository and exact source for a binary. This information is stored in
some variable called DISTURL and is specified as obs://$OBS_INSTANCE/$PROJECT/$REPOSI-
TORY/$SOURCE_REVISION-$PACKAGE(:$FLAVOR). Note that the final segment, :$FLAVOR, is op-
tional and exists only for packages built using the multibuild feature. The source specified via
the DISTURL can be accessed by pasting the URL into the search interface of the OBS web in-
terface. Or use the command line tool to check it out:

osc checkout $DISTURL

You need to go to the right OBS instance as this is not handled automatically yet.

213 Package Build

23.2.1 Read DISTURL from an RPM

RPM binaries contain the DISTURL as tag. It can be read from the rpm database for installed
RPMs and also from the rpm binaries itself.

rpm -q --qf '%{DISTRL}\n' $rpm

23.2.2 Read DISTURL from a container

Containers store the DISTURL as label. You will see only the DISTURL from the highest layer via

docker inspect --format '{{.Config.Labels}}' $image_id

The disturl is always set via the key 'org.openbuildservice.disturl'.

214 Read DISTURL from an RPM

24 Build Containers

Containers are workloads which embed all necessary les to make the workload independent
of the running host OS. This includes (but is not limited to) libraries, executables and shared
resource les.

24.1 Supported Container Formats
A container that is providing its own kernel is commonly called a virtual machine and will be
referred to as such in this book. The Open Build Service (OBS) supports container builds either
by supporting the native build format or as side product of a different format. This ranges is
from very simple chroot containers over server (for example, Docker) or desktop formats (for
example, AppImages, Snaps or Flatpaks) up to full VM builds (such as for OpenStack, KVM, or
as a Live CD via KIWI).

SimpleImage

SimpleImage is a special format which uses the rpm spec le syntax and just packages
the resulting install root as tar ball or squashfs image. The format is just using the Buil-
dRequires tags from a le called simpleimage, it supports also rpm macro handling to
allow for exceptions depending on the build environment.

Docker

Docker images can be built either via the KIWI tool or from Dockerfile build descriptions.

AppImage

The desktop-oriented AppImage format is currently only created as a side effect of an RPM
build. Open Build Service (OBS) supports signing and publishing the .AppImage les, the
rest is handled via wrapper packages which converts an RPM (or DEB package) into an
AppImage le. Own build rules can provided via a Recipe le, fallback code will be used
if no Recipe le is available.

Snap

The Snap format is supported natively. However, external resources are only supported
via source services and therefore not all build types are supported. Snapcraft only works
with Ubuntu-based base systems. (Code to support RPM-based distributions exists as well
but has not been merged upstream yet.)

215 Supported Container Formats

Flatpak

Flatpak packages can be built in the Open Build Service, see Section 2.8, “Flatpak” for further
details.

Livebuild

Livebuild is the Debian livebuild support for ISO images.

Mkosi

Mkosi (https://github.com/systemd/mkosi/) allows building images for rpm, arch, deb, and
gentoo based distributions, see Section 2.9, “mkosi” for further details.

24.2 Container Registry
Container Registries are repositories that container images are published and can be automat-
ically pulled from using tools like podman (https://podman.io/) or docker (https://www.dock-

er.com/) .

The Open Build Service will automatically publish container images in a OCI-compatible reg-
istry, with the URLs to the images constructed as follows: $BASE/$PROJECT/$REPOSITO-

RY/$IMAGE_NAME:$TAG with the following components:

$BASE: URL/IP under which the Open Build Service instance is reachable

$PROJECT: The name of the project where the image is build, with all colons replaced with
forward slashes.

$REPOSITORY: The name of the repository where the containers are published.

$IMAGE_NAME: The name of this container image. It defaults to the name of the package
from which the container is build. Alternatively, a different image name can be specified
in the build recipe, e.g. via the containerconfig element in a KIWI le (see the kiwi docu-

mentation (https://osinside.github.io/kiwi/building_images/build_container_image.html?high-

light=containerconfig) for further details).

$TAG: The image tag. This defaults to latest with alternatives being provided in a similar
fashion as the image's name.

The cooverview (https://github.com/openSUSE/cooverview) project provides a simple user-fac-
ing webpage to search for containers published by the Open Build Service and can be used to
conveniently obtain the correct registry URLs. It is used to power registry.opensuse.org (https://

registry.opensuse.org/)

216 Container Registry

https://github.com/systemd/mkosi/
https://podman.io/
https://www.docker.com/
https://www.docker.com/
https://osinside.github.io/kiwi/building_images/build_container_image.html?highlight=containerconfig
https://osinside.github.io/kiwi/building_images/build_container_image.html?highlight=containerconfig
https://osinside.github.io/kiwi/building_images/build_container_image.html?highlight=containerconfig
https://github.com/openSUSE/cooverview
https://registry.opensuse.org/
https://registry.opensuse.org/

24.3 Container Image Signatures
The Open Build Service automatically signs every package that has been build and publishes
the cryptographic signature alongside with it. Container images are no exception to this and the
detached signatures can be used by podman (https://podman.io/) to verify every image that
is pulled from the registry.

Podman has to be configured rst as outlined in the following steps.

Create a yaml le under /etc/containers/registries.d/ with an appropriate name for
your instance and the following contents:

EXAMPLE 24.1: REGISTRY.YAML

docker:
 REGISTRY_URL:
 sigstore: REGISTRY_URL/sigstore

Replace REGISTRY_URL with the appropriate URL to your instance of Open Build Service
(for example, registry.opensuse.org).

Add the following object into the key transports in the le /etc/containers/poli-
cy.json:

EXAMPLE 24.2: POLICY.JSON

 "docker": {
 "REGISTRY_URL": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "PATH_TO_PUBLIC_KEY"
 }
]
 }

The complete /etc/containers/policy.json can then look like this:

EXAMPLE 24.3: POLICY.JSON

{
 "default": [
 {
 "type": "insecureAcceptAnything"
 }

217 Container Image Signatures

https://podman.io/

],
 "transports": {
 "docker-daemon": {
 "": [
 {
 "type": "insecureAcceptAnything"
 }
]
 },
 "docker": {
 "REGISTRY_URL": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "PATH_TO_PUBLIC_KEY"
 }
]
 }
 }
}

Save the public key of the project where your image is build under PATH_TO_PUBLIC_KEY
(you can choose any location to which you have read access, only ensure that you specify
it in /etc/containers/policy.json as well).

Podman will from now on automatically fetch the published signatures from the backend and
verify them before storing the images locally.

218 Container Image Signatures

25 Source Management

25.1 Find Package Sources

OBS is adding information to each created package about the origin of the sources. This infor-
mation is stored in the DISTURL tag of an rpm, which can be displayed as follows:

rpm -q --queryformat '%{DISTURL}\n' glibc
rpm -q --queryformat '%{DISTURL}\n' -p glibc-2.1.0-1.i586.rpm

The disturl can look like this: obs://build.opensuse.org/openSUSE:Factory/stan-
dard/80d21fdd2299302358246d757b4d8c4f-glibc It always starts with obs://. The second
part is the name of the build instance, which usually also hosts the Web UI. Next comes the
project name and the repository name where the binary got built. Last part is the source md5
sum and the package name.

The disturl can also be entered in the search eld of the web interface of the build service.

rpm packages managed via the scmsync mechanic may have also the VCS tag. It provides the
git repository URL when the project is build using the

BuildFlags: setvcs

ag in the build config.

25.2 Generating SLSA Provenance Data

OBS 2.11 can produce and publish additional SLSA provenance attestation les. This les are
currently following the v0.2 Alpha spec, which is suspect to change. We will change the code to
follow the specification, so the les might change in an incompatible way until a stable version
has been released.

This can be enabled via the BSConfig.pm le only. The reason behind is that the functionality
is expensive in regards of disk space. All old binaries used for build are kept. You may want
to enable it nevertheless by setting the slsaprovenance variable in BSConfig.pm with a list of
projects to enable it.

219 Find Package Sources

25.3 Generating SBOM (Software Bill Of Material)
Data
OBS 2.11 can produce and publish additional SPDX data for certain build types. This is con-
trolled via the project configuration. For details, refer to Section 4.2, “Configuration File Syntax” for
sbom:FORMAT (under BuildFlags).

220 Generating SBOM (Software Bill Of Material) Data

26 SCM Bridge

26.1 SCM Bridge

26.1.1 Introduction

The SCM bridge allows the sources of a single package or an entire project to be stored and
maintained in any trusted SCM repositories. However, git is currently the only supported SCM
system.

This allows to manage all packaging-relevant source changes in an external SCM repository
using the native tooling of the SCM (e.g. git). It is recommended to have this SCM server on the
same trust level as the OBS instance as it becomes the authoritative source. However, any SCM
server reachable via network could be used.

osc can still be used to checkout sources. This will create an SCM repository, so any modification
needs to be done using the native SCM tooling (e.g. git). osc can still be used for local building
and checking server side build results.

Be aware that any source modification mechanics, submit requests or link behaviour may work
differently or not at all. For example you can not use automatic package source merging via
_link les anymore. This means also that workflows inside of OBS are not working anymore
or are limited. A submit or release request would still work with a scmsync (source control
management system sync) source, but the user would always need to manually specify the target.
Functionality for when an entire project is managed via scmsync is even more limited.

Furthermore it is recommended to configure a global notification hook in the SCM server to
allow OBS to follow the sources automatically.

26.1.2 Setup a package using the scm bridge

The setup is purely done in package meta by defining the SCM URL inside of the scmsync tag:

<scmsync>https://gitlab.com/some/repository</scmsync>

The repository is cloned including all subdirectories and submodules. However the build de-
scriptions need to be placed in the top-level directory.

221 SCM Bridge

Large binary les may be stored using git LFS or by referencing external build assets, using asset
management. These assets will get downloaded and verified as well. The advantage is that this
information can also be used to compile Software Bills of Materials (SBOMs). Have a look in
the pbuild documentation (http://opensuse.github.io/obs-build/pbuild.html#_remote_assets) for
further details on this.

In another typical scenario, a package maintainer owns a git repository where a build description
and distribution specific les are stored. The sources from the upstream project may be added
via a git submodule. However, for many build types like rpm builds it is recommended to build
a tar ball at buildtime for the source rpm. This can be achieved with buildtime source services.

26.1.3 Setup an entire project using the SCM bridge

An entire project can be setup by defining the scmsync tag in project meta data. Every top level
subdirectory of the scm repository is considered as a package.

Large projects may use git submodules for each package. This avoids the need to clone the entire
project to modify a single package.

The build configuration part can get stored as '_config' le in the top level directory.

It is possible to limit the actual used package sources by specifying an "onlybuild" cgi parameter
as part of the scmsync url. This parameter can be used multiple times. This is useful, for example,
when trying to do a test build of just a few packages without the need to modify the source. In
that way an open merge request may be tested before merging. Example URL:

<scmsync>https://gitlab.com/some/repository?onlybuild=glibc&onlybuild=kernel</scmsync>

26.1.4 Implementation and Limitations

The sources are currently cloned for the OBS source server to allow OBS to process them. This
is to be considered an internal implementation detail and may change in future.

Git submodules: are cloned by default

Git VCS history: is not included for server side builds by default to save storage space. It
can be included by adding a keepmeta=1 CGI parameter to the URL. This is not needed
for local building when using osc.

Git LFS les: are included by default. They can be excluded by adding a lfs=0 CGI para-
meter to the URL.

222 Setup an entire project using the SCM bridge

http://opensuse.github.io/obs-build/pbuild.html#_remote_assets

Using just a subdirectory of the git repository can be done by adding a subdir=DIRECTORY
CGI parameter to the URL.

Architecture specific remote assets can be selected by adding an arch=ARCH CGI para-
meter to the URL.

As an example, for the subdirectory case the URL would look like this:

<scmsync>https://gitlab.com/some/repository?subdir=MY_SUBDIRECTORY</scmsync>

26.1.4.1 Using a specific revision, tag or branch

The URL can define a revision, tag or branch via an URL fragment. This means the URL can get
extended by a hash character and the revision, tag or branch.

<scmsync>https://gitlab.com/some/repository#MY_REVISION</scmsync>

This allows to set up multiple projects building for different branches. It is possible to use branch-
es for implementing CI workflows. For example a submission test building just a subset, a clean
build and a final reviewed build.

26.1.4.2 Converting to a project git

A project git repository is mostly the same as any project for the pbuild tool. The command

osc create-pbuild-config

creates the _config and _pbuild les for a given repository and architecture. The _config le
is used by OBS as well as by the build configuration (prjconf). The additional _pbuild le is
analogous to the OBS project meta, but is not yet honored by OBS. Still, it can be included in
the git tree for pbuild users.

26.1.4.3 Forking a scmsync package

The OBS server allows to create a cloned project with another package using a specified SCM
repository. This can be used by tooling to create forked test builds for merge requests. The api
POST route for this is

/source/PROJECT/PACKAGE?cmd=fork&scmsync=NEW_SCM_URL

223 Implementation and Limitations

26.1.5 SCM Source Updates

The OBS instance needs to get notified on any change in the SCM server. There are two ways
to achieve this. One way is via single configurations for each git repository as documented
in the Section 7.6, “Trigger a service run via a webhook” documentation. An alternative way is to
configure it globally. This requires admin permissions on the git hosting side and another bridge
implementation. The advantage is that any used repository will be synced automatically just by
referencing it via the scmsync meta tag.

The update notification has been only implemented for gitea atm, you can nd details in the
obs-gitea-bridge (https://github.com/openSUSE/obs-gitea-bridge) documentation.

224 SCM Source Updates

https://github.com/openSUSE/obs-gitea-bridge

27 Supported Formats

Open Build Service is by design format agnostic, but it needs format specific support to be able
to parse build descriptions and running the build. This chapter is focusing on describing Open
Build Service specics of a format. Either limitations or extensions of Open Build Service builds.

27.1 Spec File Specials (RPM)
To create an RPM package, you need a spec le.

A le with the extension .changes can be used to document the package history, but it
is not required.

OBS-specific RPM macros which are set are: %_project and %_repository

#!ForceMultiVersion can be used to avoid resetting the build counter reset on version
update. This is handled automatically in most cases. Explicitly adding this instruction is
only needed when it is not possible to detect whether there are subpackages defining
their own version. This can be the case when the subpackages are created dynamically
via external rpm macros.

#!BcntSyncTag: STRING defines the build counter sync tag in a spec le. It is used when
the bcntsynctag element tag is not defined in package meta. Also it can depend on archi-
tecture, repository or flavor for example.

#!BuildConflicts: STRING defines a conflicting package or dependency at build time
only.

#!BuildIgnore: STRING ignores a dependency at build time.

#!BuildRequires: STRING Requires a build dependency. Usually the rpm native Buil-
dRequires is the better way to define this. Use this tag only when the dependency should
only exist when using the build script or OBS.

#!needsrootforbuild The build will be executed by root user. Please note that this must
be permitted either by the OBS admin (via the BSConfig.pm configuration) or enabled in
via build configuration rule. Also osc requires an additional parameter for local build (--
userootforbuild).

225 Spec File Specials (RPM)

#!needsslcertforbuild This will prepare an SSL certification based on the project key.
It is used to create secure boot enabled packages usually. Please note that this will fail, if
the project still has an old DSA key.

#!needsappxsslcertforbuild Creates an appx compatible ssl certificate based on the
project key. Please note that this will fail, if the project still has an old DSA key.

#!needsbinariesforbuild All package les are usually removed before starting the build
(after finishing to setup the build environment). This marker keeps them also during build.

27.2 OBS Extensions for (KIWI) Appliance Builds
KIWI appliance builds create images which can be used for direct consumption. Note: builds in
non-VM environments do fail often due to the bootloader setup. Use osc build --vm-type=kvm
for local building. OBS is evaluating kiwi builds at least two times. One time for the build host
dependencies and another time for the target distribution used inside of the image. For container
builds a third evaluation happens to nd the base container.

KIWI builds inside of OBS need to fulfill following requirements:

config.xml les need to be renamed to a filename with .kiwi suffix.

repositories which are used must use either a URL which starts with the OBS download
prefix or they must be written in obs://PROJECT/REPOSITORY syntax.

OBS extends kiwi functionality with following options. These covers cases which would need
explicit command line commands, so they are covered via the tags to have them in a reproducible
way.

A repository defined as obsrepositories:/ will used the expanded list of repositories as
defined in the project meta. This is useful when moving kiwi image descriptions between
projects, for example for development and release builds.

Defining build counter sync tag OBS-BcntSyncTag: STRING

An exclusive architecture list to build for can be defined with an xml comment OBS-Ex-
clusiveArch: ARCH_LIST

An excluded architecture list to skip builds can be defined with an xml comment OBS-
ExcludeArch: ARCH_LIST

226 OBS Extensions for (KIWI) Appliance Builds

A list of profiles to build can be defined via an xml comment OBS-Profiles:
PROFILE_LIST
This can also be handled via _multibuild flavor lists by setting a xed string of OBS-Pro-
files: @BUILD_FLAVOR@

Packages get picked usually in a xed order from the most important repository in OBS.
This happens independently of the version number of the packages. Set the xml comment
OBS-UnorderedRepos to disable the repository order handling and to have a more similar
behavior as with plain package manager builds. Note: this can result into switching repos-
itories between builds and is therefore less reproducible.

Container builds can specify a specific repository which shall be used for searching the
base container. Use the XML comment OBS-Imagerepo:$REPOSITORY_URL for this. The
repository URL may be in obs://$PROJECT/$REPOSITORY style.

Container builds can specify additional tags via OBS-AddTag:$TAG (KIWI limits it to one
tag) in obs://$PROJECT/$REPOSITORY style.

A predefined milestone OBS-Milestone: milestone
This defines a milestone name (for example, Beta1) which will be applied during release
operations. The candidate will receive its final tag then.

27.3 OBS Extensions for Dockerfile based builds

OBS needs to parse RUN commands to detect build dependencies (repositories and packages).
Currently calls from zypper, apt-get, yum and dnf are supported. Additional downloads need to
be covered by source services. This ensures reproducible builds and a safe build environment
without network access.

OBS extends Docker functionality with the below tags. Instead of these options, you would oth-
erwise need explicit command-line commands. However, to make it possible to create repro-
ducible builds, use the OBS tags.

227 OBS Extensions for Dockerfile based builds

A #!UseOBSRepositories tag will use the expanded list of repositories as defined via path
elements in the project meta. This is useful when moving descriptions between projects,
for example for development and release builds.

The tag #!UnorderedRepos will disable the repository prioritization for build dependen-
cies. This behavior is similar to plain Docker tooling. It introduces the risk that with each
build another repository is prioritized or that dependency problems of newer package ver-
sions are hidden.

#!BcntSyncTag: TAG to define the build counter sync tag.

#!BuildTag: TAG to define one or multiple tags to be used for the container.

#!BuildName: NAME Report back a defined NAME. Otherwise it gets derived from the rst
tag, replacing all / and : with - characters.

#!BuildVersion: VERSION Report back a defined VERSION. By default it is set to zero.
The version is used by OBS for tracking. This needs to be set together with BuildName,
otherwise it will be ignored.

#!ExclusiveArch: ARCH_LIST An exclusive architecture list to build for. The architecture
list is separated by spaces.

#!ExcludeArch: ARCH_LIST An excluded architecture list to skip builds. The architecture
list is separated by spaces.

#!ArchExclusiveLine: ARCH_LIST The next line will only be considered by the scheduler
the listed architectures. The line will still get executed on all architectures during the build.

#!ArchExcludedLine: ARCH_LIST The next line will not be considered by the scheduler
on the listed architectures. The line will still get executed on all architectures during the
build.

#!Milestone: MILESTONE This defines a milestone name (for example, Beta1) which will
be applied during release operations. The candidate will receive its final tag then.

#!NoSquash disables the squashing of all layers created during the build to a single layer.
Without this, every RUN line is an additional layer.

The used filename of the build results are only important inside of OBS. The publishing happens
via the built-in registry interface which is providing all defined tags for an image. The filename
itself may be used on aggregates or other binary filters in OBS. It is either derived by the rst
defined tag or by the BuildName and BuildVersion tag if both are defined.

228 OBS Extensions for Dockerfile based builds

28 Request and Review System

The OBS comes with a generic request system where one party can ask another to complete a
certain action. This can be, for example, taking source changes, granting maintainer rights or
deleting a package. Requests are also used deal with more complex workflows.

A request is an object in the database. It can be accessed via the /request API route. osc and
the web interface can show and process these requests. There are also interfaces to show the
requests which should be handled for a certain user.

28.1 What a request looks like

A request is an object in the database. It can be accessed via the /request API route. Main parts
of the request are

state: The state tells if the request still needs to processed or has been handled already
and how.

actions: these are the changes which will be applied when accepting the request.

reviewer: reviewer can be added automatically at request creation time or manually by any
involved party. Usually all of them should approve the request before it will be accepted.
However, the target can ignore that and accept anyway optionally.

description: an explanation of why the actions should be done.

history: a history about state changes of the request.

accept_at: the request will get accepted automatically after the given time. Such a request
can only be created when having write permissions in the target. Automatic cleanup re-
quests created by Admin user are using this.

Requests can only be accepted or rejected in their entirety. Therefore, it can make sense to have
multiple actions in one request if changes should be applied in one transaction. For example,
submitting a new package and removing an old instance: Do either both or nothing. This implies
that the person accepting the request must have write access in all targets or they will not be
allowed to accept the request.

229 What a request looks like

28.1.1 Action Types

Actions always specify some target. This can be either a project or a package. Further information
depend on the action type. The following gives an overview, for details, see the XML schema
for requests.

28.1.1.1 submit

A submit action will transfer sources from one package to another package. Usually a submit
request will refer to a specific revision in the source, but it does not have to. If no revision
is specified, then the current revision at the time of acceptance will be used. This should be
avoided when relying on complex reviews during the request process. Hence, it is recommended
to identify a specific version in your submitrequest (osc submitrequest -r 42 ...).

The submit action can support options to update the source or even to remove the source. Tools
like osc are applying the cleanup rule by default when submitting from a default user home
branch project.

28.1.1.2 release

Is used to release a finished build. Sources and binaries are copied without a rebuild (The target
project should have build disabled). A release target needs to be defined with trigger="man-
ual".

28.1.1.3 delete

A delete action can request removal of a project or package instance.

28.1.1.4 add_role

An add_role requests a specific role for a given user or group to the target. For example, one
could use this to ask for maintainer rights, or to become a default reviewer.

230 Action Types

28.1.1.5 set_bugowner

set_bugowner is similar to add_role, but removes all other bugowner roles in the target. This
happens to have a unique identifier to be used when assigning bug reports in external tools
like Bugzilla.

28.1.1.6 change_devel

can be used to update the devel package information in the target.

28.1.1.7 maintenance_incident

Official request to open a maintenance incident for official support products. These requests are
created by developers who want to start an official maintenance process. Details are described
in the maintenance chapter. A new maintenance incident project is created and package sources
get copied there when accepting it. All sources of all actions in one request will be merged into
the same maintenance incident project.

28.1.1.8 maintenance_release

Is used to release a maintenance update. Sources and binaries are copied without a rebuild. Open
Build Service also creates a unique update identifier. Details can be found in the maintenance
chapter.

28.1.1.9 group

Deprecated. Was never in a released OBS version. It is not allowed to be used anymore.

28.1.2 Request states

new: The default value for newly created requests. Everybody involved in the specified
targets can see the request and accept or decline it.

accepted: The request has been accepted and the changes applied. history les have a
reference to this request.

231 Request states

declined: The request has been reviewed and not (yet) been accepted by the target. This is
often used to ask for some more information from the submitter, since declined requests
remain active, returning to the submitter's active request queue (that is, the submitter will
need to take action now).

revoked: The submitter has taken back their request. The request is considered to be in-
active now.

superseded: This request is obsolete due to a new request. The request is considered to be
inactive now. The superseding request is linked in this request.

review: There are still open reviews inside of the request. Nobody has declined it yet. The
request is not yet visible to the target by default. The state will change automatically to
new when all reviewers accept.

28.1.3 Reviewers

Reviews can be done by users, groups, projects or packages. Review by project or package means
that any maintainer of them is asked for reviews. This is handy to avoid the need to figure
who actually is a maintainer of a certain package. Also, new maintainers of a package will see
requests in case the old maintainer did not handle them.

28.1.3.1 Manually added reviews

Reviewers can be added manually by anyone involved in a request. This can be used to hand
over a review. In that situation the new reviewer needs to be added and the original reviewer's
own review needs to be accepted. The request becomes declined when any of the reviewers are
declining the request.

28.1.3.2 Automatically added reviews

Project and package objects can have users or groups with a reviewer role. They are added
automatically to a request as reviewer when a request is created which has them as target. In
case the project and package do specify reviewers, all of them are added to the request.

232 Reviewers

28.1.4 Request creation

The API is doing a number of checks at request creation time. In case a target is not specified it
tries to set it according to the linked package. If an entire project is specified as source it expands
it to all packages inside. This means it is replacing one action with multiple. When using the
addrevision parameter it does also add the current revision of the package source to the action.
This makes it easy to create new requests with little logic in the client.

28.1.5 Request operations

Requests can be modified only in very limited ways after creation. This is to avoid the nature
of the request changing, after reviewers have reviewed it. Valid operations on a request are:

di: does not modify the request, just shows source modifications wanted by the request

changestate: to change the state of the request, for example to accept it.

changereviewstate: to change the state of a review inside of a request.

addreviewer: add further reviewer to a request

28.2 Who can accept a request
The question of who can accept a request can be answered by inspecting who has write permis-
sions on the target project of the request. This includes both maintainers listed in the project
itself, plus all maintainers of higher-level projects within the project hierarchy. (For example,
requests touching a project "foo:bar" can be accepted by all maintainers of that project, as well
as by all maintainers of the project "foo".)

233 Request creation

29 Image Templates

Image templates are pre-configured image configurations. The image templates page (https://

build.opensuse.org/image_templates) provides a list of these templates. Users can clone these
templates and further configure them as they like.

29.1 Structure of Image Templates
As mentioned image templates are essentially pre-configured KIWI (https://github.com/OSIn-

side/kiwi) image configurations. As any KIWI configuration they usually contain a tarball con-
taining image sources, a config.sh le and the KIWI configuration XML le.

In addition, you can define an icon for your image templates by adding graphical image (for
example, PNG, JPG) to your template sources and name it _icon. If that le exists, it will be
used as icon for your image on the image templates page.

Note
For more information about KIWI images, see Section 2.5, “KIWI Appliance”.

29.2 Adding Image Templates to/Removing Image
Templates from the Official Image Template Page
The image templates page lists templates per project. New templates get added by setting the
OBS:ImageTemplates attribute to a project. Any package container belonging to a project with
that attribute will be shown on the template page.

Only admins can add / remove the OBS:ImageTemplates attribute from a project.

29.3 Receiving Image Templates via Interconnect
If your OBS instance is connected to a remote instance via interconnect, OBS will fetch image
templates from the remote instance and present it on the image templates page. They appear
below the local templates.

234 Structure of Image Templates

https://build.opensuse.org/image_templates
https://build.opensuse.org/image_templates
https://github.com/OSInside/kiwi
https://github.com/OSInside/kiwi

For more information about interconnects, see Book “Administrator Guide”, Chapter 5 “Administra-

tion”, Section 5.2 “Managing Build Targets”.

235 Receiving Image Templates via Interconnect

30 Multiple Build Description File Handling

30.1 Overview
A package source may contain multiple build description les. They can be used depending on
the base distribution, the repository name or for different configurations. These mechanics can
be also combined.

The right build description le gets picked by filtering. The build will not start when either no
le matches or multiple candidates exist. The filtering happens with the following steps:

1. Based on the package build format of the based distributions. RPM-based distributions will
use spec les for example.

2. Based on the le name of the le before the suffix. It is not important as long as just one
le exists, but it has to match when multiple les exist. The name is defined by the build
container name, which is either defined in a _multibuild directive le or is the source
package name.

3. Specific les can be created to be built for a specific repository. Append the reposito-
ry name of the build container behind the package name with a -. For example hel-
lo-openSUSE_13.2.spec.

30.2 How Multibuild is Defined
Use the _multibuild directive to build the same source in the same repository with different
flavors. This handy to define all flavors in one place without the need to maintain packages with
local links. This allows also to transfer all sources including a possible changed flavor from one
project to another with a standard copy or submit request.

The _multibuild le lists all build container names, each of them will be built as usual for each
defined repository and each scheduler architecture.

For example, inside the kernel source package we can build both kernel-source and ker-
nel-obs-build packages by listing them inside the le.

Multibuild packages are defined with the _multibuild directive le in the package sources.

The _multibuild le is an xml le. For example:

<multibuild>

236 Overview

 <flavor>kernel-source</flavor>
 <flavor>kernel-obs-build</flavor>
</multibuild>

Build description les are needed for each of them for each package (for example, ker-
nel-source.spec or kernel-obs-build.dsc) inside of the sources. There will be another build in case
there is also a matching le for the source package container name, otherwise it will turn into
an “excluded” state. Dockerfile based build descriptions may provide own build descriptions for
each flavor via Dockerfile.FLAVOR suffixed les.

237 How Multibuild is Defined

31 Maintenance Support

This chapter explains the setup and workflow of a maintenance update in the openSUSE way.
However, this should not be limited to openSUSE distribution projects but be usable anywhere
(the entire workflow or just parts of it).

The goal of the OBS maintenance process is to publish updates for a frozen project, in this
example an entire distribution. These updates need to be approved by a maintenance team and
the published result must contain documentation about the changes and be applicable in the
easiest way by the users. The result is a package repository with additional information about
the solved problems and defined groups of packages to achieve that. Binary delta data can also
be generated to reduce the needed download size for the clients.

Technically this results in a frozen software repository containing the original package distrib-
ution and an additional update repository with a subset of updated packages that will be pre-
ferred by the package manager thus superseding the packages from the original distribution.

31.1 Simple Project Setup

FIGURE 31.1: SIMPLE PROJECT SETUP

238 Simple Project Setup

This figure gives an overview about the project setup and general workflow for a single pack-
age and single maintained distribution. It shows the "openSUSE:11.4" project, which is con-
sidered to be frozen and not changing at all anymore. The "openSUSE:11.4:Update" projects
hosts all officially released updates. It does not build any binary, just gets it sources and bi-
naries from the maintenance incident project via the release process. The incident project is
named "openSUSE:Maintenance:IDxxx" in this example, which is under control of the mainte-
nance team. Official updates get built and reviewed here. QA teams are also testing the binaries
from here. However, a user can prepare it in the same way in their project and start the main-
tenance process via doing a "maintenance" request.

openSUSE:11.4 is the GA Project in this example. It is locked and not changing anymore.

openSUSE:11.4:Update is the Update Project to release official updates for the locked
openSUSE:11.4 project. Thus it links to the openSUSE:11.4 project, inheriting all package
sources from there.

openSUSE:Maintenance is the Maintenance Project which in this case maintains the
openSUSE:11.4:Update project (and optionally others as well).

openSUSE:Maintenance:IDxxx is a Incident project created automatically by accepting a
maintenance request.

31.2 Project setup for the Maintenance Process
All workflow related projects must be set up with a proper project meta configuration.

It is recommended to lock the GA Project by the project maintainer by using the osc lock
[PROJECT] command

The Update Project has to have the <link project="[PROJECT]"/> element in the project
meta configuration.
It is very useful to define groups of bugowners, maintainers and reviewers and to make
use of bots for further quality assurance tasks.

The Maintenance Project has to have the

<project name=... kind="maintenance">

attribute in the project meta configuration, as well as a

239 Project setup for the Maintenance Process

<maintenance>

element containing one or more

<maintains project="[PROJECT]"/>

elements. It is very useful to define groups of maintainers and reviewers and to make use
of review bots to enforce desired quality properties here.

31.3 Using the Maintenance Process
This describes all required steps by all involved persons from preparing to releasing a mainte-
nance update.

31.3.1 Workflow A: A Maintainer Builds an Entire Update Incident
for Submission

A user is usually starting to prepare an update by creating a maintenance branch. This is typically
done by creating an own maintenance project. Usually multiple released products are affected,
so the server can nd out which one are maintained by a given source package name, in this
example for glibc including checkout via

osc mbranch glibc
osc mbranch --checkout glibc

This is equivalent to the API call /source?cmd=branch&package=glibc.

It is also possible to branch only one defined version, if it is known that only one version is
affected. In this example the openSUSE:12.1 version:

osc branch --maintenance openSUSE:12.1 glibc
osc branch -M -c openSUSE:12.1 glibc

In a simple setup as described before, create the maintenance branch from the package of the
Update Project as the GA Project can never be changed anymore.

NOTE: both branch commands do support the --noaccess parameter, which will create a hidden
project. This may be used when a not yet publicly known security issue is get xed.

Afterwards the user needs to do the needed modifications. Packages will be built and can be
tested. Afterwards they may add information about the purpose of this maintenance update via

240 Using the Maintenance Process

osc patchinfo

If the source changes contain references to issue trackers (like Bugzilla, CVE or FATE) these will
be added to the _patchinfo le.

The server will create a full maintenance channel now, in case the user wants to test this as
well. After the user has tested, they have to create a maintenancerequest to ask the maintenance
team to accept this as an official update incident:

osc maintenancerequest

On accepting this request all sources of the entire project will get copied to the incident project
and be rebuild. The origin project gets usually removed (based on the request cleanup options).

31.3.2 Workflow B: Submitting a Package Without Branching

You may submit a package source from a project which is not prepared as maintenance project.
That works via the maintenancerequest mechanism by specifying one or more packages from
one project. As a consequence it means also that the rst testable build will happen in the
maintenance incident project. Also, the maintenance team need to write the update information
on their own.

osc maintenancerequest [SOURCEPROJECT [SOURCEPACKAGES RELEASEPROJECT]]

The following example is submitting two packages (kdelibs4 and kdebase4) from the project
KDE:Devel project as update for openSUSE:12.1

osc maintenancerequest KDE:Devel kdelibs4 kdebase4 openSUSE:12.1

Note: Specifying an Existing Incident
It is also possible to specify an existing incident as target with the --incident parameter.
The packages will then be merged into the existing incident project.

241 Workflow B: Submitting a Package Without Branching

31.3.3 Workflow C: Process Gets Initiated By the Maintenance
Team

The maintenance team may start the process (for example because a security issue was reported
and the maintenance team decided that a x is required). In this case the incident gets created
via the Web UI or via the API call:

osc createincident [PROJECT]

osc api /source/PROJECT?cmd=createmaintenanceincident

osc api /source?cmd=createmaintenanceincident&attribute=OBS:Maintenance.

To document the expected work the creation of a patchinfo package is needed. This can be
done via

osc patchinfo [PROJECT]

It is important to add Bugzilla entries inside of the _patchinfo le. As long these are open Bugzilla
entries, the bug assignee will see this patchinfo on their "my work" Web UI and osc views, so
they knows that work is expected from them.

31.3.4 Maintenance Incident Processing

The maintenance incidents are usually managed by a maintenance team. In case the incident
got started by a maintainer a maintenance request is targeted towards the defined maintenance
project, in our example this is openSUSE:Maintenance. The defined maintainer and reviewers
in this project need to decide about this request. In case it gets accepted, the server is creating a
subproject with a unique incident ID and copies the sources and build settings to it. The origin
project will get removed usually via the cleanup option. This maintenance project is used to
build the final packages.

If the maintenance team decides to merge a new maintenance request with an existing incident,
they can run the osc rq setincident $REQUESTID $INCIDENT before accepting the request.

The maintenance team may still modify them or the patchinfo data at this point. An outside
maintainer can still submit changes via standard submit request mechanism, but direct write per-
missions are not granted. When the maintenance people are satisfied with the update, they can
create a request to release the sources and binaries to the final openSUSE:11.4:Update project.

osc releaserequest

242 Workflow C: Process Gets Initiated By the Maintenance Team

The release request needs to specify the source and target for each package. In case just the
source package or project is specified the API is completing the request on creation time. It is
using this based on the source link target of each package and the release information in the
repository definitions.

31.3.5 Incident Gets Released

The release process gets usually started via creating a release request. This sets all affected
packages to the locked state, which means that all commands for editing the source or triggering
rebuilds are not allowed anymore.

The release request typically needs to be approved by QA and other teams as defined in the
Update project. In case something gets declined, the necessary changes need to be submitted to
the maintenance project and a new release request has to be created.

A unique release ID will be generated and become part of the updateinfo.xml le in the target
project on release event. This ID is different from the incident ID and is usually in the style of
"YEAR-COUNTER". The counter is strictly increasing on each release. In case of a re-release of
the same incident a release counter will be added.

A different naming scheme can be defined via the OBS:MaintenanceIdTemplate attribute value.
The release will move all packages to the update project and extend the target package name
with the incident ID. Binaries will be moved as well without modification. The exception is the
updateinfo.xml which will be modified by replacing its incident id with the release id.

31.3.6 Incident Gets Reopened and Re-Released

An update should not, but may have an undetected regression. In this case the update needs a
re-release. (If another problem shall be xed a new incident should be created instead.)

If the current update harms the systems, the maintenance team may decide to take it back
immediately. It can be done by removing the patchinfo.ID package container in the Update
projects. This will create a new update channel without this update.

To re-open a release incident project, it must get unlocked and marked as open again. Unlocking
can be done either via revoking a release request or via explicit unlocking the incident. The
explicit unlock via osc: osc unlock INCIDENT_PROJECT is also triggering a rebuild to ensure to

243 Incident Gets Released

have higher release numbers and adding the "trigger=maintenance" ags to the release target
definitions. Afterwards the project can be edited again and also gets listed as running incident
again.

31.3.7 Using Custom Update IDs

The used string of update IDs can be defined via the OBS:MaintenanceIdTemplate attribute value
of the master maintenance project.

31.4 OBS Internal Mechanisms
OBS is tracking maintenance work and can be used as a database for future and past updates.

31.4.1 Maintenance Incident Workflow

A maintenance incident is started by creating the incident project, either via a developer request
or by the maintenance team.

1. Incident project container is created. This is always a sub project to the maintenance
project. A unique ID (counter) is used as subproject name. Build is disabled by default
project wide.

2. Default content for an incident is added via branch by attribute call:

Package sources get added based on given package and attribute name from all ex-
isting project instances. The package name is extended by the source project name
to allow multiple instances of same package in one project. Source revision links are
using the xsrcmd5 to avoid that other releases will affect this package instance.

Build repositories are added if missing. All repositories from all projects where the
package sources gets branched from are used. The build ags in the package instances
gets switched on for these.

A release target definition is added to the repository configuration via additional
releasetarget element. The special release condition "maintenance" gets defined for
this.

3. Fixes for the packages need to get submitted now.

244 Using Custom Update IDs

4. A patchinfo le need to get added describing the issue.

5. OBS server is building packages according to the sources and update information according
to the patchinfo data.

6. one or more release requests get created. It does also set the project to "freeze" state by
default, this means no source changes are possible anymore and all running builds get
canceled.

7. Usually the request is in review state with defined reviewers from the release project. All
reviewers need to review the state in the incident project.

8. Request changes into state "new" when all reviewers accepted the release request.

9. The release happens on accepting the request by the maintainers of the release project.

All package sources and binaries get copied into a package container where the pack-
age name gets extended by the incident number.

A main package gets created or updated, it just contains a link to the current incident
package. For example, glibc points to glibc.42. The purpose of this main package is
to have a place to refer to the current sources of a package.

The release target condition=maintenance gets removed.

The updateinfo.xml gets updated with the existing or now created unique updateinfo
ID.

The server will update the repository based on all existing binaries.

10. OPTIONAL: A maintenance coordinator may remove the release by removing the package
instances inside the release project. The source link has to be xed manually. (We may
offer a function for this).

11. OPTIONAL: A maintenance incident can be restarted by

Removing the lock ag.

Adding again the condition=maintenance attribute to the release target which re-
quires a re-release.

NOTE: The step 1 and 2 may be done via accepting an incident request instead.

245 Maintenance Incident Workflow

31.4.2 Searching for Incidents

The Web UI shows the running and past incidents when going to the maintenance project
(openSUSE:Maintenance in our example). It shows the open requests either for creating or re-
lease an incident. Also, the open incidents, which are not yet released are visible.

All users need usually just to visit their "my work" screen in Web UI or osc to see requests or
patchinfos where actions of them are expected: osc my [work]

The following items list some common ways to search for maintenance incidents via the api:

A developer can see the work to be done by them via searching for patchinfos with open
Bugzilla entries:

/search/package?match=([kind='patchinfo' and issue/[@state='OPEN' and owner/
@login='$USER_LOGIN']])

A maintenance coordinator can see requests for doing a maintenance release via searching
for open requests with maintenance_incident action against the maintenance project. They
are visible in the Web UI request page of that project or via

/search/request?match=(state/@name='new') and action/@type='maintenance_incident'
 and action/target/@project='openSUSE:Maintenance')

A maintenance coordinator can see open incidents via searching for incidents project repos-
itories which have a release target with maintenance trigger. Note: this search result is
showing all repositories of a matching project.

/search/project?match=(repository/releasetarget/@trigger='maintenance')

A maintenance coordinator can see updates which currently are reviewed (for example
by a QA team) via

/search/request?match=(state/@name='review') and action/@type='maintenance_release')

A maintenance coordinator can see updates ready to release via searching for open requests
with maintenance_release action.

/search/request?match=(state/@name='new') and action/@type='maintenance_release')

246 Searching for Incidents

31.5 Setting Up Projects for a Maintenance Cycle

31.5.1 Defining a Maintenance Space

An OBS server is using by default a maintenance space defined via the OBS:Maintenance at-
tribute. This must get created on a project where maintenance incident projects should get cre-
ated below. This project is also defining the default maintenance maintainers and reviewers in
its ACL list.

It is possible to have multiple and independent maintenance name spaces, however the main-
tenance request must be created against this other namespace manually or using a different
attribute.

31.5.2 Maintained Project Setups

Maintained projects must be frozen, this means no changes in sources or binaries. All updates
will be hosted in the defined update project. This project gets defined via the OBS:UpdateProject
attribute which must contain a value with the update project name. In addition to this, an
attribute to define the active maintenance should also be defined, by default the OBS:Maintained
attribute. The osc mbranch command will take packages from this project as a result.

The Update project should be defined as build disabled as well. Also define a project link to the
main project and at least one repository building against the main project.

31.6 Optional Channel Setup
Channels are optional definitions to publish a sub-set of binaries into own repositories. They can
be used to maintain a larger amount of packages in a central place, but defining to published
binaries with an independent workflow which requires an approval for each binary.

31.6.1 Defining a Channel

Channels get defined and maintained in an xml le inside of a package source. The le name
of these lists must be _channel.

The le may contain a list of targets where binaries gets released to.

247 Setting Up Projects for a Maintenance Cycle

31.6.2 Using Channels in Maintenance Workflow

Channel definitions for existing packages do affect incident projects. Matching channel pack-
ages get automatically branched inside and additional repositories for the channels are created.
The server will build the channel package by aggregating the binary packages into the channel
repositories.

The _channel les can be modified inside of the incident project if needed. This can be necessary
when binary packages get renamed or added with this update. The modification will be part of
the maintenance release request as simple submit actions.

This example shows the setup where selected binary packages get released also to a defined
channel. The openSUSE:11.4:SecurityChannel project contains a _channel definition inside of
the channel package. This one gets branched as well into the incident in case a matching channel
does exist. Also, the additional repository gets added. The resulting binaries will be transfer via
a release request to the code stream project (openSUSE:11.4:Update) and the special channel
project.

248 Using Channels in Maintenance Workflow

32 Binary Package Tracking

Products and updates to them are often officially supported by a company. To allow giving
such support, there is binary package tracking. This feature allows checking which exact version
of a package was shipped at what time. This feature is often important for release managers,
maintenance engineers, QA engineers and supporters.

OBS can track these binary packages and offer a database to search them.

32.1 Which Binaries Are Tracked?
All binaries which are released into projects providing kind=maintenance_release are tracked.
In addition to that, the OBS administrator can configure additional projects via the packtrack
setting in BSConfig.pm.

32.2 What Data Is Tracked?
In short the information to identify a binary, its building place and timestamps are tracked. In
addition to that also information about possible successor versions or if the binary got removed
in the meantime. If products do reference the repositories the search interface offers also a listing
of products which are supposed to use it. Either as part of the product media itself or in one
of its update repositories.

32.2.1 Binary Identifier

A binary is identified by the following information which is extracted from components of the
le path of the binary:

Repository: Where is the binary hosted?

Name: Name of the binary le

Epoch: The epoch version (optional, usually not used)

Version: The version

Release: The release number

249 Which Binaries Are Tracked?

Architecture: The hardware architecture

Medium: Name of the medium (exists only for product builds)

32.2.2 Binary Information

Additional information about a binary is information which gets updated when a binary gets
added or replaced.

operation, got the binary added, removed or modified

publish time, aka the time when the repository gets published by OBS. This is not the same
time as when the release action got invoked.

build time

obsolete time, exists only when a binary gets removed or replaced

supportstatus, meta information about the level of support which is granted for the binary
at the time of releasing it.

updateinfo id from rpm-md repository

maintainer of the binary who has prepared this update

disturl, the exact identifier to the source and build repository

32.2.3 Product information

Additional information about products referencing to this binary.

updatefor: the listed products do reference the repository as update channel.

product: exists when the binary was part of a product medium

250 Binary Information

32.3 API Search Interface
The search of released binaries is provided via the following API endpoints:

/search/released/binary/id : short form, just listing the matched binary identifiers.
See the reference documentation (https://api.opensuse.org/apidocs/#/Search/get_search_re-

leased_binary_id) .

/search/released/binary : long form, provides all other tracked information as de-
scribed above. See the reference documentation (https://api.opensuse.org/apidocs/#/

Search/get_search_released_binary) .

Please visit the before mentioned links to get details and several examples of how to use these
API endpoints.

251 API Search Interface

https://api.opensuse.org/apidocs/#/Search/get_search_released_binary_id
https://api.opensuse.org/apidocs/#/Search/get_search_released_binary_id
https://api.opensuse.org/apidocs/#/Search/get_search_released_binary
https://api.opensuse.org/apidocs/#/Search/get_search_released_binary

33 Scheduling and Dispatching

One of the major functionalities of OBS is to calculate always the current state, based on available
sources, binaries and user configurations. In case a change happened it will trigger builds to
achieve a clean state again. The calculation of the need of a build job is called scheduling here.
The assignment of a build job to a concrete build host (aka worker) is called dispatching.

33.1 Definition of a Build Process
A build process is calculated and executed based on the following

The sources of a package defined which dependencies are required at build time. For ex-
ample, BuildRequires lines in spec les defined which other packages must get installed
to build a package

The project configuration of the package defines repositories and architectures to build for.
In case other repositories are used as a base the configuration from there is also considered.

Dependencies of packages which are required are considered as well.

Constraints regarding the worker are considered. A package may require certain amount of
resources or specific features to build. Check the constraints chapter for details. However,
apart from this the build should be independent of the specific worker where the job gets
dispatched to.

33.2 Scheduling Strategies
The defaults have the goal of creating an always reproducible state. This may lead to more builds
than practically necessary, but ensures that no hidden incompatibilities exist between packages
and also that the same state can later be achieved again (with a subsequent rebuild of the same
sources and configurations). This can also lead to multiple builds of the same package in the
case of dependency loops.

In some setups this may not be wanted, so each repository can be configured differently. The
usual options to modify the project meta configurations can be used to configure different strate-
gies. For example using osc:

osc meta prj -e YOUR_PROJECT

252 Definition of a Build Process

A repository is configured as following by default, however only the name attribute is required
to be set.

Example <repository
 name="standard" rebuild="transitive" block="all" linkedbuild="off"> [...]
 </repository>

33.2.1 Build Trigger Setting

The build trigger setting can be set via the "rebuild" attribute. Possible settings are

transitive

The default behavior, do a clean build of all dependant packages

direct

Just build the package with changed sources and direct dependant packages. But not in-
direct dependant packages.

local

Just build packages with changed sources.

Note
Note: You can run into dependency problems in case you select direct or local without
noticing this in the build state. Your packages might not even be installable or have
random runtime errors (like not starting up or crashing applications), even when they
claim to be "succeeded". Also, you cannot be sure that you will be able to re-build them
later. So never do an official shipment with this setting of a release. This knob is exposed
to allow deliberate suppression of the strictly reproducible builds (for example, to limit
burning CPU unnecessarily).

33.2.2 Block Mode

Usually the build of a package gets blocked when a package required to build it is still building
at the moment. The "block" attribute can modify this behaviour:

all

The default behavior, do not start the build if a dependant package is currently building.

253 Build Trigger Setting

local

Just care about packages in your project for the block mode.

never

Never set a package to blocked.

Note
When using something other than “all” you will have to deal with the following problems:

Intermediate builds can have dependency and runtime problems.

Your packages will get built more often, take more resources on the server side. As
a result the dispatcher will rate your repository down.

33.2.3 Follow Project Links

off

DEFAULT: do not build packages from project links

localdep

only build project linked packages if they depend on a local package result.

alldirect

build all packages from the linked projects. Indirectly linked projects get not build.

all

build all packages from direct and indirect linked projects

33.3 Release Number Handling
Most build formats define a version and a release number. The version is usually defined by
the upstream project, while the release number is handled by the distributor. In addtion to this
Open Build Service differentiates between a source change counter (called check-in counter aka
CI_CNT) and a build counter (BCNT). The check-in counter gets increased when any source
change is done. The build counter gets increased when a build gets triggered due to any other
reason than a source change.

254 Follow Project Links

The version and check-in counter are defined by the package source, while the build counter is
stored per project, package, repository and architecture combination.

33.3.1 Build Counter Syncing via Architectures

The default configuration is to sync build counters across all architectures for a given project,
package and repository. This can only be changed by the OBS administrator.

33.3.2 Build Counter Syncing via multiple packages

In some cases it is critical keep the build counter in sync via multiple packages. The old way
to do so is to define a common bcntsynctag in package meta. The used string identifies the
packages to be kept in sync. The package name is the default when no bcntsynctag exists. Please
note that this affects always all flavors of a multibuild source.

The newer recommended way is to define these tags in the sources instead. These work also
with git implementations and are more flexible.

255 Build Counter Syncing via Architectures

34 Build Constraints

Build constraints provide a way for the user to specify build worker parameters that the Build
Service will use to decide which build workers are "qualified" to undertake a given build.

They are intended to be used for defining known, hard requirements for successfully building a
given package (for example, disk space, memory, or certain CPU functionality).

34.1 Build Resource Usage and Statistics

Ideally, the build constraints should be set to the minimum values that enable a build to succeed,
because any higher setting than the minimum might unnecessarily reduce the number of build
workers available to build the package.

Now, in the real world, we do not always have a precise idea of what the minimum values are
for all the different build worker parameters that can be controlled using OBS build constraints.
That need not deter us from setting build constraints, however. It is not necessary to wait for a
build failure before setting minimum memory and disk space constraints, for example, because
the OBS can give us reasonable values for memory and disk space based on a successful build.

Each successful build produces a le called _statistics which can be examined to get details
of the resources our build consumed. We can then use this information to set appropriate values
for the relevant build constraints.

34.1.1 Displaying the build statistics

The information from the _statistics le can be found in the Build Service web UI, by clicking
on the build target we are interested in and then clicking on "Show resources". Alternatively, the
_statistics le itself can be downloaded from the Build Service, either from the command
line or using the OBS API.

34.1.1.1 Downloading the _statistics file using osc

Since the _statistics le is a build artifact produced by every successful build, it is always
included among the build artifacts downloaded by osc getbinaries.

256 Build Resource Usage and Statistics

34.1.1.2 Downloading the _statistics file using the OBS API

If you are using the OBS API, the relevant call is:

GET /build/{project_name}/{repository_name}/{architecture_name}/{package_name}/
_statistics

Important
When reviewing the build statistics, it's important to be aware that the numbers can vary
significantly from build to build depending on build parallelism (e.g. make -j).

34.2 Constraint Qualifiers
In general, build constraints are specified in terms of a qualifier and a value. The qualifier
expresses "what" - the build worker parameter that is to be constrained - and the semantics of the
value depend on the qualifier. If the qualifier takes a numeric value, it generally expresses "how
much", or, in other words, the minimum value (of that parameter) that a given build worker
must meet in order to fulfill the constraint. But there are some qualifiers, such as hostlabel,
that take a simple string value.

In the simplest cases, the qualifier is just a string. In more complicated cases, the qualifier can
include subqualifiers and be modified by attributes. For example:

hardware:disk:size unit=G

The string hardware:disk:size in this example means "size, a subqualifier of disk, which is
itself a subqualifier of hardware", and unit=G means "the value is expressed in units of Gigabytes.

For a full treatment of constraint syntax, see Section 34.4, “Constraint syntax”.

34.3 Constraint scope and precedence
Depending on the required scope, constraint qualifiers and their values can be set at four differ-
ent levels: instance, project, package, and build recipe. Setting constraints at the OBS instance
level is up to the administrator of the OBS instance and is covered in the OBS Admin Guide.
Project-wide constraints are defined in the project configuration. Package constraints are defined
in a special le, _constraints, in the packages sources. It is also possible to insert constraints
directly in the individual build recipes (RPM spec les, Dockerfiles).

257 Constraint Qualifiers

The constraints that are in force for a particular build are determined by merging all constraints
defined at all levels: site, project, package, and build recipe. The merging is done in that order,
with later settings overwriting earlier ones. That means, for example, that site-wide constraints
can be overrided at any of the lower levels (project, package, build recipe), project-level con-
straints can be overrided at the package and build recipe levels, etc.

34.3.1 Project-scoped constraints

Build constraints for an entire project, or for specific repositories within it, or for specific archi-
tectures within those repositories, are defined in the project config by adding lines as so:

Constraint: <QUALIFIER> <VALUE>

The QUALIFIER syntax is the same as used in RPM spec les, documented in Section 34.4, “Con-

straint syntax”. Within the project configuration, individual Constraint lines can be enclosed in
guards to make a constraint apply only to certain architectures or repositories. For example:

%ifarch ppc ppc64 ppc64le
Constraint: hardware:cpu:flag power8
%endif

or

%if "%_repository" == "images"
Constraint: hardware:disk:size unit=M 4000
%endif

Important
Constraints set in project configuration affect not only the project itself, but also all
projects that build against it.

For a full treatment of constraint syntax, see Section 34.4, “Constraint syntax”.

34.3.2 Package-scoped constraints

Setting constraints at the package level is achieved by including an XML le called _con-
straints in the package sources. The Build Service will attempt to validate this le when it is
committed (from the osc command line) or saved (in the web UI) to prevent invalid XML from
reaching the Build Service.

258 Project-scoped constraints

Here is a simple example showing what a _constraints le might look like:

<?xml version="1.0"?>
<constraints>
 <hardware>
 <physicalmemory>
 <size unit="M">2000</size>
 </physicalmemory>
 <disk>
 <size unit="G">5</size>
 </disk>
 </hardware>
 <sandbox>kvm</sandbox>
 <hostlabel exclude="true">SLOW_CPU</hostlabel>
</constraints>

For details on constraint qualifiers and how to specify them in a _constraints le, see Sec-

tion 34.4, “Constraint syntax”.

34.3.3 Build recipe-scoped constraints

At the build recipe level, constraints are set by embedding lines containing constraint qualifiers
and values directly in RPM spec les or Dockerfiles. Such lines take the form

#!BuildConstraint: <QUALIFIER> <VALUE>

The # character at the beginning of the line causes the build recipe parser (RPM, Docker, pod-
man) to ignore the whole line, but in combination with the ! character signifies an OBS-specific
directive that is picked up by a pre-processor within the OBS back-end.

Instead of specifying subqualifiers by nesting directives like in XML, colons are used. For ex-
ample:

#!BuildConstraint: linux:version:min 3.0

In this example, "linux:version:min" is the constraint qualifier and "3.0" is the value.

As described for project-scoped conditionals, above, #!BuildConstraint lines can be guarded
with various conditionals to limit their effect to certain architectures or, e.g., multibuild flavors.

Important
Be careful when setting build constraints. The idea is to use them to express minimum
values for the various parameters, below which builds are likely to fail. If you set a con-
straint too high, you risk reducing the pool of compliant build workers down to a very

259 Build recipe-scoped constraints

low number, or even to zero. (A low number of compliant build workers means your build
may not start for a long time, and no compliant workers at all will cause the build to fail.
See Section 34.5, “Constraint Handling” for details.)

Important
By default, constraints applied to build workers regardless of architecture. However, you
may only be interested in certain architectures and not in others. See Section 34.6, “Checking

Constraints with osc” for how to get architecture-specific information on which workers
satisfy your constraints.

34.4 Constraint syntax
This section describes the various constraint qualifiers and their syntax.

In general, it is important to understand that the syntax used will differ depending on where the
constraints are specified. When specified via a _constraints le, XML syntax is used, while a
different syntax is used when specifying constraints in a project configuration or a build recipe
(e.g., an RPM spec le). In this section, both syntaxes are described for each qualifier.

Note
When specifying constraints using XML syntax, attribute values must be enclosed in dou-
ble-quotes (unit="G", exclude="true", etc.), while in project configurations and build
recipes the values must be given without quotes (unit=G, exclude=true).

34.4.1 hostlabel

The "hostlabel" qualifier is any string which can be assigned to build workers when starting the
bs_worker process. Since its intended use is to restrict a build to specific workers, it should
only be used after consultation with OBS administrators who have detailed knowledge of the
build farm, and ideally as a negative definition, using the exclude=true attribute. Even then,
keep in mind that hostlabel settings are not portable, since the always specific to a given OBS
instance and should therefore only be used as a last resort in situations that cannot be addressed
by any of the other qualifiers.

260 Constraint syntax

An example use case is to run benchmarks in a reproducible way.

Example for _constraints le:

<constraints exclude="false">
 <hostlabel>benchmark_runner</hostlabel>
</constraints>

Example for project configuration:

Constraint: hostlabel benchmark_runner

Example for RPM spec le or Dockerfile:

#!BuildConstraint: hostlabel benchmark_runner

34.4.2 sandbox

Defines the "sandbox" which is used for the build. The "sandbox" is the virtual environment in
which the build takes place: each build worker is configured with a xed sandbox type.

The configuration of this build constraint is typically left to OBS administrators, and there is
usually no reason for a project or package maintainer to set it.

Example for _constraints le:

<constraints>
 <sandbox exclude="true">kvm</sandbox>
</constraints>

Example for project configuration:

Constraint: sandbox exclude="true" kvm

Example for RPM spec le or Dockerfile:

#!BuildConstraint: sandbox exclude="true" kvm

34.4.3 linux

This is a category of constraints specific to the Linux kernel, applied to the kernel running on
the build worker.

261 sandbox

34.4.3.1 version

To require a specific Linux kernel version or version range.

Example for the _constraints le:

<constraints>
 <linux><version>
 <min>3.0</min>
 <max>4.0</max>
 </version></linux>
</constraints>

Example for project configuration:

Constraint: linux:version:min 3.0
Constraint: linux:version:max 4.0

Example for RPM spec le or Dockerfile:

#!BuildConstraint: linux:version:min 3.0
#!BuildConstraint: linux:version:max 4.0

34.4.3.1.1 min

Minimum kernel version.

34.4.3.1.2 max

Maximum kernel version.

34.4.3.2 flavor

A specific kernel flavor, such as default or smp (corresponding to the kernel packages kernel-de-
fault and kernel-smp, respectively).

Example for _constraints le:

<constraints>
 <linux>
 <flavor>default</flavor>
 </linux>

262 linux

</constraints>

Example for project configuration:

Constraint: linux:flavor default

Example for RPM spec le or Dockerfile:

#!BuildConstraint: linux:flavor default

34.4.4 hardware

To specify that build workers must meet certain minimum hardware specifications or possess
certain hardware features.

34.4.4.1 cpu

To require a specific CPU feature.

34.4.4.1.1 flag

CPU features which are provided by the hardware. On Linux, these can be found in /proc/
cpuinfo. The ag element may be used multiple times to require multiple CPU features.

Example for _constraints le:

<constraints>
 <hardware><cpu>
 <flag>mmx</flag>
 <flag>sse2</flag>
 </cpu></hardware>
</constraints>

Example for project configuration:

Constraint: hardware:cpu:flag mmx
Constraint: hardware:cpu:flag sse2

Example for RPM spec le or Dockerfile:

#!BuildConstraint: hardware:cpu:flag mmx
#!BuildConstraint: hardware:cpu:flag sse2

263 hardware

EL0 is a special ag that that can be used on hardware that only supports level-0 exceptions,
such as certain armv8l systems. This means that VMs or 32-bit kernels are not supported but
userland is supported. This ag can be used to block builds on such hardware if no 64-bit kernel
is available for a project.

Example for project configuration:

Constraint: hardware:cpu:flag exclude=true EL0

Example for RPM spec le or Dockerfile:

#!BuildConstraint: hardware:cpu:flag exclude=true EL0

Additional ags are also reported for effective architecture level of the CPU. This includes the
following ags:

power7

power8

power9

x86-64-v2

x86-64-v3

x86-64-v4

34.4.4.2 processors

To specify a minimum number of processor cores, virtual or physical (i.e., as reported by /proc/
cpuinfo, provided by the build worker and usable for the build

Example for _constraints le:

<constraints>
 <hardware>
 <processors>4</processors>
 </hardware>
</constraints>

Example for project configuration:

Constraint: hardware:processors 4

264 hardware

Example for RPM spec le or Dockerfile:

#!BuildConstraint: hardware:processors 4

34.4.4.3 jobs

Each build worker is configured with a given default for the JOBS environment variable, which
expresses how many parallel build processes the worker should be able to sustain. To require a
minimal number of pre-confiured parallel jobs for the build, use this qualifier.

Note
This specifies the number of parallel jobs the build tooling should use, so even though it
is under hardware it is not actually a hardware requirement.

Example for _constraints le:

<constraints>
 <hardware>
 <jobs>4</jobs>
 </hardware>
</constraints>

Example for project configuration:

Constraint: hardware:jobs 4

Example for RPM spec le or Dockerfile:

#!BuildConstraint: hardware:jobs 4

34.4.4.4 disk

Hard disk specific constraints.

34.4.4.4.1 size

To specify a minimum amount of free disk space, below which a build on the worker will not
be attempted.

265 hardware

Example for _constraints le:

<constraints>
 <hardware>
 <disk>
 <size unit="G">4</size>
 </disk>
 </hardware>
</constraints>

Example for project configuration:

Constraint: hardware:disk:size unit=G 4

Example for RPM spec le or Dockerfile:

#!BuildConstraint: hardware:disk:size unit=G 4

34.4.4.5 memory

To specify a minimum amount of RAM memory that the worker must be equipped with.

34.4.4.5.1 size

To require a minimum memory size, including swap space.

Example for _constraints le:

<constraints>
 <hardware>
 <memory>
 <size unit="M">1400</size>
 </memory>
 </hardware>
</constraints>

Example for project configuration:

Constraint: hardware:memory:size unit=M 1400

Example for RPM spec le or Dockerfile:

#!BuildConstraint: hardware:memory:size unit=M 1400

266 hardware

34.4.4.6 physicalmemory

Memory specific.

34.4.4.6.1 size

To require a minimal memory size. Swap space is not taken into account here.

Example for _constraints le:

<constraints>
 <hardware>
 <physicalmemory>
 <size unit="M">1400</size>
 </physicalmemory>
 </hardware>
</constraints>

Example for project configuration:

Constraint: hardware:physicalmemory:size unit=M 1400

Example for RPM spec le or Dockerfile:

#!BuildConstraint: hardware:physicalmemory:size unit=M 1400

34.5 Constraint Handling
What happens when someone sets a constraint so high, that the OBS instance does not have even
a single worker that meets it? What happens when just a few workers satisfy all the constraints,
but all of them are busy building packages, or have been taken down for maintenance? This
section describes how the OBS handles these "low compliant worker" situations.

34.5.1 At least one compliant worker is available

After determining which build workers satisfy the defined constraints for a given build, the
scheduler checks if any of them are available to start building. If at least one is available, the
build begins. The rest of this section describes the OBS's behavior when no compliant build
workers are free to start building a given package.

267 Constraint Handling

34.5.2 More than half of existing workers satisfy the constraints

The build will stay in state "scheduled" until one of the compliant workers becomes available.
No further notification is set.

34.5.3 Less than half of existing workers satisfy the constraints

The build will stay in state scheduled until one of the compliant workers becomes available. In
addition, the dispatch details are set to tell the user that this build might take a long time to
complete. The notification looks like this:

waiting for 4 compliant workers (4 down)

In this case, all four compliant workers are down. The notification helps the user understand
why the build is not starting. The dispatch details can also be retrieved using the OBS API or,
e.g., using the command osc results -v).

34.5.4 No existing workers satisfy the constraints

If no worker can handle the constraints defined by the package or project, the build fails. In
such cases, the build log will mention why the build failed:

package build was not possible:

no compliant workers (constraints mismatch hint: hardware:processors sandbox)

Please adapt your constraints.

34.6 Checking Constraints with osc
You can check the constraints of a project or package with the osc tool. You have to be in an
osc working directory.

osc checkconstraints [OPTS] [REPOSITORY] [ARCH] [CONSTRAINTSFILE]

Either you give a repository and an arch or osc will check the constraints for all repository /
arch pairs for the package. A few examples:

geeko > osc checkconstraints

268 More than half of existing workers satisfy the constraints

Repository Arch Worker
---------- ---- ------
openSUSE_Leap_42.2 x86_64 1
openSUSE_Leap_42.1 x86_64 1

If no le is given it takes the local _constraints le. If this le does not exist or the --ignore-le
switch is set only the project constraints are used.

geeko > osc checkconstraints openSUSE_Leap_42.1 x86_64
Worker

x86_64:worker:1
x86_64:worker:2

If a repository and an arch is given a list of compliant workers is returned.

Another command to verify a worker and display the worker information is osc workerinfo.

geeko > osc workerinfo x86_64:worker:1
<worker hostarch="x86_64" registerserver="http://localhost:5252" workerid="worker:1">
 <hostlabel>MY_WORKER_LABEL_1</hostlabel>
 <sandbox>chroot</sandbox>
 <linux>
 <version>4.1.34-33</version>
 <flavor>default</flavor>
 </linux>
 <hardware>
 <cpu>
 <flag>fpu</flag>
 <flag>vme</flag>
 <flag>de</flag>
 </cpu>
 <processors>2</processors>
 <jobs>1</jobs>
 </hardware>
</worker>

It returns the information of the desired worker.

269 Checking Constraints with osc

35 Building Preinstall Images

Preinstall images can optionally be used to install a set of packages in one quick step instead
via single package installations. Depending on the build host even snapshots with copy-on-write
support may be used which avoids any IO.

A preinstall image can be used if it provides a subset of packages which is required for the build
job. The largest possible image is taken if multiple are usable.

To use a preinstall image there needs to be a package container inside of the project or in a
repository used by the build job. This package needs a _preinstallimage le. The syntax of it is
spec le like, but just needs a Name: and at least one BuildRequires: line.

To ignore packages despite existing dependencies, use #!BuildIgnore: tags or %if.

Preinstall image build jobs are always preferred to allow the best effect of them. We recommend
defining images for often used standard stacks.

Example _preinstallimage le for a basic preinstall image:

Name: base
BuildRequires: bash
#!BuildIgnore: brp-trim-desktopfiles

270

36 Authorization

36.1 OBS Authorization Methods

Each package is signed with a PGP key to allow checking its integrity on user's machines.

36.1.1 Default Mode

OBS provides its own user database which can also store a password. The authentication to
the API happens via HTTP BASIC AUTH. See the API documentation to nd out how to create,
modify or delete user data. Also a call for changing the password exists.

36.1.2 Proxy Mode

The proxy mode can be used for esp. secured instances, where the OBS web server shall not
get connected to the network directly. There are authentication proxy products out there which
do the authentication and send the user name via an HTTP header to OBS. This also has the
advantage that the user password never reaches OBS.

36.1.3 LDAP Mode

LDAP authentication code is still part of OBS, but due to the lack of any test cases it is currently
not recommended to use it.

36.2 OBS Token Authorization

OBS provides a mechanism to create tokens for specific operations. This can be used to allow
certain operations in the name of a user to others. This is esp. useful when integrating external
infrastructure. The create token should be kept secret by default, but it can also be revoked at
any time if it became obsolete or leaked.

271 OBS Authorization Methods

36.2.1 Managing User Tokens

Tokens always belong to a user. A list of active tokens can be viewed using

osc token

osc token --delete <TOKEN>

36.2.2 Executing an Action

A token can be used to execute specific operations. This can be a source service trigger, a rebuild
call, or release action. The setup needs to be prepared for the action. For example a source
service for that can be setup with:

osc add git://....

The best way to create a token is bind it to a specific package. The advantage is that the operation
is limited to that package, so less bad things can happen when the token leaks.

osc token --create <PROJECT> <PACKAGE>

Also, you do not need to specify the package at execution time. But keep in mind that such form
only works when you run it on an as checkout of a package. Both commands below do the same
thing but in a different way:

osc token --trigger <TOKEN>

osc api -X POST /trigger/runservice?token=<TOKEN>

A token can be registered as generic token, means allowing to execute all source services in
OBS if the user has permissions. You can create such a token by skipping project/package on
creation command:

osc token --create

In this case, you are forced to specify project/package along with the token. On the other hand,
you are not limited from where you execute it. Again, two examples doing same thing:

osc token --trigger <TOKEN> <PROJECT> <PACKAGE>

curl -H "Authorization: Token <TOKEN>" -X POST https://$obs_instance/trigger/runservice?
project=<PROJECT>&package=<PACKAGE>

272 Managing User Tokens

You can also limit the token to a specific package. The advantage is that the operation is limited
to that package, so less bad things can happen when the token leaks. Also you do not need to
specify the package on execution time. Create and execute it with:

osc token --create <PROJECT> <PACKAGE>

osc token --trigger <TOKEN>

curl -H "Authorization: Token <TOKEN>" -X POST /trigger/runservice

A token to rebuild a package can be created and trigger by

osc token --operation rebuild --create <PROJECT> <PACKAGE>

osc token --operation rebuild --trigger <TOKEN>

curl -H "Authorization: Token <TOKEN>" -X POST https://$obs_instance/trigger/rebuild

A token to release a package can be created and trigger by

osc token --operation release --create <PROJECT> <PACKAGE>

osc token --operation release --trigger <TOKEN>

curl -H "Authorization: Token <TOKEN>" -X POST https://$obs_instance/trigger/release

273 Executing an Action

37 Quality Assurance(QA) Hooks

OBS provides multiple hooks to place automated or manual tests at different points of time.

This chapter describes the different possibilities to provide and execute QA checks. The order of
the items is sorted by the order in a typical development process. It is preferred to add a check
as early as possible in the process to keep turn-around times small.

37.1 Source Related Checks
Things which can be verified based on a given source can be checked even before commit time
on the developers workstation. This is the earliest possible point of time to add a check. But it
can also optionally be enforced on the server side.

Automated source processing is done by source services in OBS world. Check the source service
chapter how to use or write one. It is important to decide if the test case shall output warning
messages and when it shall report an error by exit status.

Test cases in source services get usually applied to all packages of a project. (It is possible to
execute it only for specific packages though.)

37.2 Build Time Checks

37.2.1 In-Package Checks

Checks running during the build of a package are usually test cases provided by the author of a
package. However, the packager can also add simple checks, for example, for code that is known
to break on version updates and might be forgotten when the package is touched the next time.

These test are often specific for a concrete package only. So it is typically executed in %check
section of rpm spec les directly. In case the check can be used with multiple package source, it
is a good idea to package the test case in an own package and just call it from the other packages.

rpm calls %check after %install section and before creating the actual checks.

SUSE distributions also provide build time checks to test the installed les inside of the build
root. It is to be used for test cases which shall run on all packages which are built inside of a
distribution. This hook can be used by installing a le to /usr/lib/rpm/brp-suse.d/ directory.
These scripts also have the power to modify installed les if needed.

274 Source Related Checks

37.2.2 Post Build Checks

The standard tool to test binary packages for RPM-based distributions is rpmlint. DEB-based
distributions use the lintian tool instead.

These checks are executed by the build script after a successful build. Note that these are exe-
cuted as the standard user by default.

37.2.3 Post Build Root Checks

Files in /usr/lib/build/checks/* are executed as root user. Typical use cases are install tests of
the build packages to ensure that the scripts inside of the packages are working in general.

37.2.4 KIWI Specific Post Build Root Checks

The le /usr/lib/build/kiwi_post_run is executed after KIWI jobs have finished. It can be used
to run the appliance or to modify it. For example to package an appliance into an rpm.

37.3 Workflow Checks

Workflow steps, for example transferring packages from one project to another, are done via
requests in OBS. At least when multiple parties are involved. One or more of these parties can
be automated test cases. Or human manual approval steps.

Default reviews can be defined inside of projects and packages. A new request to a certain
package does get the reviewers added defined in target projects and packages. Reviewers can
be currently users, groups or the maintainers of a specified project or package.

37.3.1 Automated Test Cases

Open requests can be requested in an XML parseable way via the API running

osc api /request?states=review&user=auto-review-
user&roles=reviewer&reviewstates=new&view=collection

275 Post Build Checks

osc can be used to accept or decline requests after running the automated test. It can also add a
review comment which you can use to give a reason (for example, error messages) for accepting
or declining a request. Requests, which are not tested, for example because they are of a not
matching type (for example, deleting packages) needs to get also a review accept. Otherwise,
this would block the process.

276 Automated Test Cases

Glossary

.changes File
In OBS, a le with the le extension .changes to store changelog information.
See also Changelog.

API
API stands for application programming interface. It lets your product or service communi-
cate with other products and services without having to know how they’re implemented.

The OBS API is located here: https://api.opensuse.org .

The documentation for the API is located here: https://api.opensuse.org/apidocs .

AppImage
An application and its dependencies packaged as a single le which can run on many distri-
butions without unpacking or installing.

Appliance
An image built and preconfigured for a specific purpose. Appliances usually consist of a
combination of an application (for example, a Web server), its configuration, and an oper-
ating system (for example, SUSE Linux Enterprise Server). Appliances can be copied as-is
onto a hard disk, an SSD, or started as a virtual machine (deployed).
See also Operating System Image, Image (Image File).

Archive (Archive File)
An archive le contains a representation of usually multiple les and directories. Usually,
archive les are also compressed. Archive les are the basis for binary packages (Binary

Package (Binary)).

Attribute
Attributes can be added to projects or packages to add meta information or to trigger actions.
For example, you can use the attribute OBS:AutoCleanup to delete a project after a certain
amount of time.

Binary Package (Binary)
An archive le that contains an installable version of software and metadata. The metadata
includes references to the dependencies of the main software. Dependencies are packaged
as additional binary packages.

277

https://api.opensuse.org
https://api.opensuse.org/apidocs

Formats of binary packages include RPM and DEB. In the OBS context, binary packages are
sometimes also called binaries.
See also Container, Operating System Image, Source Package, Deb, RPM, KIWI, Archive (Archive

File).

Branch
Personal copy of another repository that lives on your home project. A branch allows you
to make changes without affecting the original repository. You can either delete the branch
or merge it into the original repository with a submit request.
See also Submit Request.

Bug
Issue that documents incorrect or undesirable behaviour

Bugowner
In OBS, Bugowner is a user role which can be set for a project or a package. However, ideally,
set this role for individual packages only. Users with this role can only read data but they
are responsible for reacting to bug reports.
See also Maintainer.

Build
Generating ready-to-publish binaries, usually for a specific distribution and architecture.

Build Log
Output of the build process of a certain package.
See also Build.

Build Recipe
Generic term for a recipe le for creating a package. A build recipe includes metadata,
instructions, requirements, and changelogs. For RPM-based systems like SUSE, a .spec le
is used and contains all the previous points. Debian-based systems use a debian directory
which splits all the information.
See also Spec File.

Build Requirement
Package requirements that are needed to create or build a specific package.
See also Installation Requirement, Build Recipe.

278

Build Result
The current state of a package. Example of a build result could be succeeded, failed, blocked,
etc.

Build Root
Directory where the osc command copies, patches, builds, and create packages. By default,
the build root is located in /var/tmp/build-root/BUILD_TARGET.
See also Build Target.

Build Target
Specific operating systems and architecture to build for.

Changelog
Listing of a high-level overview sorted by date. An entry of a changelog can contain infor-
mation about version updates, bug and security fixes, incompatible changes, or changes re-
lated to the distribution.
See also .changes File.

Commit
A record of a change to one or more les. Each record contains the revision, the author, the
date and time, a commit checksum, an optional request number, and a log message.
See also Revision.

Container
An image le that contains a deployable version of software and metadata. Dependencies of
the main software are also included, such as additional libraries.

Unlike operating system images, containers do not include an operating system. Unlike bi-
nary packages, containers are deployed and not installed. Formats of containers include Ap-
pImage, Docker, Snap, and Flatpak.
See also Binary Package (Binary), Operating System Image, Image (Image File).

Deb
A package format created and used by the Debian distribution.
See also Package, RPM.

Decision
Decision made by a moderator (Cleared or Favor) when they receive a report of problematic
content or user.

279

Dependency
See Requirement.

Devel Project
A set of related packages that share certain features. For example, the devel project dev-
el:languages:python stores all packages related to the Python programming language.
See also Home Project, Project.

Diff
See Patch.

DISTURL
The DISTURL is a unique identifier of a source and its build setup. It is written usually written
inside of the build result to be able to identify the origin. A DISTURL is structured as obs://
OBS_NAME/PROJECT/REPOSITORY/REVISION-PACKAGE. It can be shown for example via

RPM packages: rpm -q --qf '%{DISTURL}\n' PACKAGE_NAME

Locally built container images: podman inspect IMAGE_ID | grep org.openbuild-
service.disturl

Container images built on Open Build Service: skopeo inspect docker://URL |
grep org.openbuildservice.disturl

Docker
Docker is a lightweight virtualization solution to run multiple virtual units (containers) si-
multaneously on a single control host.
See also Container.

Download Repository
An area containing built packages available for download and installation through Zypper
or YaST. The download repository belongs to a project and is specific to a distribution. An
example of a download repository could be http://download.opensuse.org/reposito-
ries/PROJECT/openSUSE_Tumbleweed/.

EULA
End User License Agreement. For software that needs a special license (usually non-open
source) which the user needs to agree to before installing.

Fix
See Patch.

280

Flags
A set of switches that determine the state of package or repository. This includes building,
publishing, and generating debug information.

GA Project
The GA (general availability) project builds an initial release of a product. It gets frozen after
releasing the product. All further updates get released via the Update Project of this project.

GPG Key
An encryption key pair that in the context of OBS is used to verify the owner of the repository
and packages.

Home Project
Working area in OBS for uploading and building packages. Each home project starts with
home:USERNAME.
See also Project.

Image (Image File)
An image le contains a bit-wise representation of the layout of a block device. Some types
of image les are compressed. OBS allows building multiple types of image:
Operating System Image, Container

Image Description
Specification to define an appliance built by KIWI. The image description is a collection
of les directly used by KIWI (config.xml and *.kiwi), scripts, or configuration data to
customize certain parts of the KIWI build process.
See also KIWI.

Incident
Describes a specific problem and the required updates. If the problem exists for multiple code
streams, one incident covers all of them. An incident is started by creating a maintenance
incident project and the update get built here.

Installation Requirement
Package requirements that are needed when the package is installed.

KIWI
A tool to build operating system images. It can create images for Linux supported hardware
platforms or for virtualization systems.
See also Image (Image File).

281

License
Written contract to specify permissions for use and distribution of software.
See also Project.

Link
A concept that defines a relationship between a source and a target repository.
See also Project.

Maintainer
In OBS, Maintainer is a user role which can be set for a project or a package. Users that have
this role in a project can add, modify, and remove packages and subprojects, accept submit
requests, and change metadata.
See also Bugowner.

Maintenance Project
A project without sources and binaries, defined by the maintenance team. Incidents are
created as sub projects of this project.
See also Incident.

OBS Package
OBS packages contain the sources that are necessary to build one or more binary packages
or containers. The content of OBS packages varies. In general, there is always a source le
(such as a TAR archive of the upstream sources) and a build recipe.

To build an RPM package in OBS, you need a spec le as your build recipe, for example. An
OBS package can also contain other les, such as a change log and patches.

OBS packages, unlike the name “package” suggests, do not consist of a single le. Instead,
they are directories of a version-controlled repository. However, unlike most directories,
they cannot contain subdirectories. (You can use subdirectories to simplify your work with
the checked-out package but you cannot submit these directories.)

Open Build Service (OBS)
A Web service to build binary packages, containers and operating system images from source.

The term “Open Build Service” is used to speak about the server part of the build service.
Unlike the term openSUSE Build Service, the term Open Build Service refers to all instances.

openSUSE Build Service
A specific Web service instance of Open Build Service (OBS) from the openSUSE project at
http://build.opensuse.org .

282

http://build.opensuse.org

Operating System Image
An image le that contains an operating system. The operating system can be either instal-
lable or deployable. Depending on their purpose, operating system images are classified into:
Product Image, Appliance, Virtual Machine Image

Formats of operating system images include ISO, Virtual Disk, and PXE Root File System.
See also Binary Package (Binary), Image (Image File), KIWI.

osc
A command line tool to work with OBS instances. The acronym osc stands for openSUSE
commander. osc works similarly to SVN or Git.
See also Open Build Service (OBS), https://github.com/openSUSE/osc .

Overlay File
A directory structure with les and subdirectories used by KIWI. This directory structure is
packaged as a le (root.tar.gz) or stored below a directory (named root). The contents
of the directory structure is copied over the existing le system (overlaid) of the appliance
root. This includes permissions and attributes as a supplement.
See also Appliance, KIWI.

Package
OBS handles very different types of software package:
Source Package, OBS Package, Binary Package (Binary)

See also Container.

Package Repository
A place where installable packages are available. This can be either from a media like CD,
DVD, or from a remote online repository.

Official repositories can divided into oss software (licensed under an open source license)
and non-oss (for software released under other. non-open source licenses). Additionally,
there are update source, and debug repositories as well.

Package Requirement
See Requirement.

Patch
Textual differences between two versions of a le.
See also Patch File.

283

https://github.com/openSUSE/osc

Patch File
A le that contains a patch with the le extension .diff or .patch.
See also Patch.

Product Image
An image that allows installing an operating system, usually from a removable medium,
such as a USB disk or a DVD onto a hard disk or SSD.

Live images are a special case of operating system images. They can be run directly a USB
disk or DVD and are often but not always installable.
See also Operating System Image, Image (Image File).

Project
Unit which defines access control, repositories, architectures, and a set of packages contain-
ing sources.

Project Configuration
Settings to define the setup of the build system, usually to switch on or o certain features
during the build or to handle circular dependencies.
See also Project.

Publishing
Finished process when a package is successfully built and available in the download repos-
itory.
See also Download Repository.

Release Project
A release project is hosting a release repository which is not building any packages ever. It
is only used to copy sources and binaries to this project on a release event.

Repo File
A le with the name PROJECT.repo. inside the download repository. The le contains infor-
mation about the name of the repository, the repository type, and references to the down-
load repository and the GPG key.
See also Download Repository.

Repository
A distribution-specific area that holds dependencies required for building a package.
See also Download Repository.

284

Requirement
In the OBS context, package requirements that are needed to create, build, or install a pack-
age.
See also Build Requirement, Installation Requirement.

Revision
A unique numeric identifier of a commit.
See also Commit.

RPM
A package format. It stands for recursive acronym RPM Package Manager. Mainly used by
SUSE, Red Hat, u.a.
See also Deb, Package.

Sandbox
Isolated region of a host system which runs either a virtual machine or a change root envi-
ronment.
See also Build Root.

Service File
An XML le that contains metadata required for building a package. This includes version
information, upstream source repository, and actions.

Source
Original form, mostly written in a computer language.
See also Package.

Source Link
See Link.

Source Package
Source packages contain content similar to an OBS package but they are packaged in an
archive le. They are also meant to allow building a single binary package or container
format only. However, source packages allow rebuilding outside of an Open Build Service
context.

An example of source packages are SRPMs which contain the source for accompanying RPM
binary packages.
See also Binary Package (Binary), Archive (Archive File).

285

Source Service
A tool to validate, generate, or modify a source in a trustable way.
See also Source.

Spec File
A le that contains metadata and build instructions. Metadata includes a general package
description and dependencies required for building and installing the package.
See also Build Recipe, Patch, Source.

Submit Request
Asking for integrating changes from a branched project.

Subproject
A child of a parent project.
See also Devel Project, Home Project, Project.

SUSE Package Hub
An OBS project reachable under openSUSE:Backports. It is a subset of openSUSE Factory
which does not contain version updates and does not conflict with official packages support-
ed by SUSE Linux Enterprise.

Target
A specific distribution and architecture, for example, openSUSE Tumbleweed for x86-64.
Also referenced as build target.

Update Project
A project which provides official updates for the products generated in the GA Project. The
update project usually links sources and repositories against the GA Project.
See also Release Project, GA Project.

Virtual Machine Image
An image which is built (and sometimes preconfigured) to be the basis of virtual machines.
Such images can usually be copied to the target computer and run as-is. As such, there is
some overlap between virtual machine images and appliances.
See also Operating System Image, Image (Image File).

Watchlist
A list of repositories that the user is interested in, available in the OBS Web UI.

286

Working Copy
See Working Directory.

Working Directory
A directory on your local machine as a result from a osc checkout call for working and
building before submitting your changes to an OBS instance.

Zypper
A command line package manager to access repositories, solve dependencies, install pack-
ages, and more.

287

A GNU Licenses
This appendix contains the GNU General Pub-
lic License version 2 and the GNU Free Docu-
mentation License version 1.2.

GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software--to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR

COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the

copyright holder saying it may be distributed under the terms of this General Public License.

The “Program”, below, refers to any such program or work, and a “work based on the Pro-

gram” means either the Program or any derivative work under copyright law: that is to say,

a work containing the Program or a portion of it, either verbatim or with modifications and/

or translated into another language. (Hereinafter, translation is included without limitation

in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this License and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a

work based on the Program, and copy and distribute such modifications or work under the

terms of Section 1 above, provided that you also meet all of these conditions:

a). You must cause the modified les to carry prominent notices stating that you changed

the les and the date of any change.

b). You must cause any work that you distribute or publish, that in whole or in part contains

or is derived from the Program or any part thereof, to be licensed as a whole at no charge to

all third parties under the terms of this License.

c). If the modified program normally reads commands interactively when run, you must

cause it, when started running for such interactive use in the most ordinary way, to print or

display an announcement including an appropriate copyright notice and a notice that there

is no warranty (or else, saying that you provide a warranty) and that users may redistribute

the program under these conditions, and telling the user how to view a copy of this License.

(Exception: if the Program itself is interactive but does not normally print such an announce-

ment, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of deriv-
ative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object

code or executable form under the terms of Sections 1 and 2 above provided that you also

do one of the following:

288

a). Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily used

for software interchange; or,

b). Accompany it with a written offer, valid for at least three years, to give any third party,

for a charge no more than your cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be distributed under the terms

of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c). Accompany it with the information you received as to the offer to distribute corresponding

source code. (This alternative is allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such an offer, in accord with

Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition les, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts
as distribution of the source code, even though third parties are not compelled to copy the
source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-

vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the

Program is void, and will automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this License will not have their

licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing

else grants you permission to modify or distribute the Program or its derivative works. These

actions are prohibited by law if you do not accept this License. Therefore, by modifying or

distributing the Program (or any work based on the Program), you indicate your acceptance

of this License to do so, and all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other

reason (not limited to patent issues), conditions are imposed on you (whether by court order,

agreement or otherwise) that contradict the conditions of this License, they do not excuse you

from the conditions of this License. If you cannot distribute so as to satisfy simultaneously

your obligations under this License and any other pertinent obligations, then as a consequence

you may not distribute the Program at all. For example, if a patent license would not permit

royalty-free redistribution of the Program by all those who receive copies directly or indirectly

through you, then the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Program

under this License may add an explicit geographical distribution limitation excluding those

countries, so that distribution is permitted only in or among countries not thus excluded. In

such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the present

version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribu-

tion conditions are different, write to the author to ask for permission. For software which

is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

sometimes make exceptions for this. Our decision will be guided by the two goals of preserv-

ing the free status of all derivatives of our free software and of promoting the sharing and

reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRAN-

TY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT

WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

289

EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-

AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-

TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH

ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source le to most effectively convey the exclusion of warranty; and each le should
have at least the “copyright” line and a pointer to where the full notice is found.

 one line to give the program’s name and an idea of what it does.
 Copyright (C) yyyy name of author

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation; either version 2
 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an in-
teractive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
 type `show w’. This is free software, and you are welcome
 to redistribute it under certain conditions; type `show c’
 for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
`show w’ and `show c’; they could even be mouse-clicks or menu items--whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright

 interest in the program `Gnomovision’
 (which makes passes at compilers) written
 by James Hacker.

 signature of Ty Coon, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU

Lesser General Public License (http://www.fsf.org/licenses/lgpl.html) instead of this License.

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent le format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

290

http://www.fsf.org/licenses/lgpl.html
http://www.fsf.org/licenses/lgpl.html

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generat-
ed HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title, preceding the beginning of the body
of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precise-
ly XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the
rst ones listed (as many as t reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general net-
work-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quanti-
ty, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

and from those of previous versions (which should, if there were any, be listed in the History

section of the Document). You may use the same title as a previous version if the original

publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship

of the modifications in the Modified Version, together with at least ve of the principal authors

of the Document (all of its principal authors, if it has fewer than ve), unless they release

you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-

sion to use the Modified Version under the terms of this License, in the form shown in the

Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title

Page. If there is no section Entitled “History” in the Document, create one stating the title,

year, authors, and publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-

parent copy of the Document, and likewise the network locations given in the Document for

previous versions it was based on. These may be placed in the “History” section. You may

omit a network location for a work that was published at least four years before the Document

itself, or if the original publisher of the version it refers to gives permission.

291

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their

titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the

Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with

any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggre-
gate” if the copyright resulting from the compilation is not used to limit the legal rights of the
compilation’s users beyond what the individual works permit. When the Document is included
in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. See http://www.gnu.org/
copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled “GNU
 Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

292

	User Guide
	About this Guide
	1. Available Documentation
	2. Feedback
	3. Documentation Conventions
	4. Contributing to the Documentation

	Part I. First Steps
	Chapter 1. Beginnerʼs Guide
	1.1. Target Audience
	1.2. Conceptual Overview
	1.2.1. Build Recipe
	1.2.2. Build Hosts and Packages
	1.2.3. Projects and Packages

	1.3. Requirements for Working with the osc Command-Line Tool
	1.4. Covered Scenarios
	1.5. Configuring Your System for OBS
	1.6. Setting Up Your Home Project for the First Time
	1.7. Creating a New Package Within Your Home Project
	1.8. Patching Source Code
	1.9. Branching a Package
	1.10. Installing Packages from OBS
	1.11. Other Useful osc Commands

	Part II. Concepts
	Chapter 2. Supported Build Recipes and Package Formats
	2.1. About Formats
	2.2. RPM: Spec
	2.3. Debian: Dsc
	2.4. Arch: pkg
	2.5. KIWI Appliance
	2.6. SimpleImage
	2.7. AppImage
	2.8. Flatpak
	2.9. mkosi

	Part III. Setup
	Chapter 3. osc, the Command Line Tool
	3.1. Installing and Configuring
	3.2. Configuring osc
	3.3. Usage
	3.3.1. Getting Help
	3.3.2. Using osc for the First Time
	3.3.3. Overview of Brief Examples

	Chapter 4. Build Configuration
	4.1. About the Build Configuration
	4.2. Configuration File Syntax
	4.3. Building with ccache or sccache
	4.4. Macro Definitions in the Build Configuration
	4.4.1. Macros for the Build Configuration Only
	4.4.2. Macros Used in Spec Files Only

	Part IV. Usage
	Chapter 5. Basic OBS Workflow
	5.1. Setting Up Your Home Project
	5.2. Creating a New Package
	5.3. Investigating the Local Build Process
	5.3.1. Build Log
	5.3.2. Local Build Root Directory

	5.4. Dependency Handling in Your Projects
	5.4.1. Associating Other Repositories with Your Repository
	5.4.2. Reusing Packages in Your Project
	5.4.2.1. Aggregating a Package
	5.4.2.2. Linking a Package

	5.5. Manage Group

	Chapter 6. Local Building
	6.1. Generic Local Build Options
	6.2. Advanced Local Build Environment Handling

	Chapter 7. Using Source Services
	7.1. About Source Services
	7.2. Modes of Source Services
	7.3. Defining Source Services for Validation
	7.4. Creating Source Service Definitions
	7.5. Removing a Source Service
	7.6. Trigger a service run via a webhook
	7.6.1. Creating a webhook on GitLab
	7.6.2. Creating a webhook on GitHub

	Chapter 8. SCM/CI Workflow Integration
	8.1. SCM/CI Workflow Integration Setup
	8.1.1. Introduction
	8.1.2. Prerequisites
	8.1.3. Supported SCMs
	8.1.4. Token Authentication
	8.1.4.1. How to Authenticate OBS with SCMs
	8.1.4.2. How to Authenticate SCMs with OBS
	8.1.4.2.1. Create Token
	8.1.4.2.2. Regenerating Secrets and Deleting Tokens

	8.1.5. Webhooks
	8.1.5.1. SCM Events
	8.1.5.2. How to Set Up a Webhook on Github
	8.1.5.3. How to Set Up a Webhook on GitLab
	8.1.5.4. How to Set Up a Webhook on Gitea

	8.1.6. OBS Workflows
	8.1.6.1. Configuration File Location
	8.1.6.2. OBS Workflow Steps
	8.1.6.2.1. Branch a Package in a Project
	8.1.6.2.2. Submit a Request
	8.1.6.2.3. Link a Package to a Project
	8.1.6.2.4. Configure Repositories/Architectures for a Project
	8.1.6.2.5. Rebuild a Package
	8.1.6.2.6. Set Flags for Projects, Packages, Repositories or Architectures
	8.1.6.2.7. Trigger Services of a Package

	8.1.6.3. Filters
	8.1.6.3.1. Filters Delimiters: only and ignore
	8.1.6.3.2. Event Filter
	8.1.6.3.3. Branches Filter
	8.1.6.3.4. Labels Filter

	8.1.6.4. Placeholder Variables

	8.1.7. Status Reporting
	8.1.8. Workflow Runs
	8.1.9. Errors
	8.1.10. Equivalence Table

	8.2. SCM/CI Workflow Steps Reference Table
	8.3. SCM/CI Workflow Versions
	8.3.1. Workflow Version Table

	8.4. SCM/CI Workflow Integration Use-Cases
	8.4.1. OBS SCM Service
	8.4.2. Test Build a Package For Every Pull Request on GitHub
	8.4.2.1. Branch
	8.4.2.2. Link and Configure Repositories

	8.4.3. Rebuild a Package for Every Change in a Branch
	8.4.4. Set Flags on a Package to Disable Builds for an Architecture
	8.4.5. Create Package on OBS for Every Software Release With Git Tags
	8.4.6. Using a Custom Configuration File URL in Combination with Placeholder Variables

	Chapter 9. Staging Workflow
	9.1. Working with Staging Projects
	9.1.1. Overview of All Staging Projects
	9.1.2. Overview of a Single Staging Project
	9.1.3. Copy a Staging Project

	9.2. Working with Requests
	9.2.1. Assign Requests into a Staging Project
	9.2.2. Remove Requests from a Staging Project
	9.2.3. List Requests of a Staging Project
	9.2.4. Exclude Requests for a Staging Workflow
	9.2.5. Bring Back Excluded Requests from a Staging Workflow
	9.2.6. Accept Staging Project

	Chapter 10. Notifications
	10.1. Notifications Configuration
	10.2. Where Can We Find the Notifications?
	10.3. Notifications Content
	10.4. Mark Notification as Read or Unread
	10.5. Notifications Filters
	10.6. API

	Chapter 11. Moderation
	11.1. Code of Conduct
	11.2. Reporting Problematic Content
	11.2.1. Who Can Report?
	11.2.2. What Can Be Reported?
	11.2.3. How To Report?

	11.3. Acting as a Moderator
	11.3.1. Who Is a Moderator?
	11.3.2. How Do Moderators Know About the Reports?
	11.3.3. How To Moderate?

	11.4. Reverting Moderator's Actions
	11.5. User Appeal
	11.6. Canned Responses For Moderators

	Part V. Best Practices
	Chapter 12. Using the OBS Web UI
	12.1. Homepage and Login
	12.2. Home Project
	12.2.1. The Project Page
	12.2.2. Changing a project's title and description
	12.2.3. Creating Subprojects to a Project

	12.3. My Projects, Server Status
	12.4. Create a link to a package in your home
	12.4.1. Add Link to Existing Package
	12.4.2. Package Page, Build Log and Project Monitor Page

	12.5. Repository Output: Built Packages
	12.6. Managing Repositories
	12.6.1. Adding a repository
	12.6.2. Add Download on Demand repositories to a project
	12.6.3. Adding DoD Repository Sources to a Repository
	12.6.4. Editing DoD Repository Sources
	12.6.5. Editing DoD Repository Sources

	12.7. Image Templates
	12.7.1. Creating Own Image Templates
	12.7.2. Publishing Image Templates on the Official Image Templates Page

	12.8. KIWI Editor
	12.8.1. Accessing the KIWI Editor
	12.8.2. Adding Repositories in the KIWI Editor
	12.8.3. Adding Packages in the KIWI Editor

	12.9. Manage Group
	12.10. Staging Workflow
	12.10.1. Creating a Staging Workflow
	12.10.2. Start Using Staging Workflow
	12.10.3. Delete a Staging Workflow
	12.10.4. Configure a Staging Workflow
	12.10.4.1. Create Staging Project from Scratch
	12.10.4.2. Create Staging Project from a Template

	12.10.5. Staging Project
	12.10.6. Working with Requests in Staging Workflow
	12.10.6.1. Exclude Requests

	Chapter 13. Basic Concepts and Work Styles
	13.1. Setup a project reusing other projects sources
	13.2. Contributing to External Projects Directly
	13.3. Contributing to Foreign Projects Indirectly

	Chapter 14. How to integrate external SCM sources
	14.1. How to create a source service
	14.1.1. Follow upstream branches
	14.1.2. Fixed versions
	14.1.3. Avoid tar balls

	Chapter 15. Publishing Upstream Binaries
	15.1. Which Instance to Use?
	15.1.1. Private OBS Instance
	15.1.2. openSUSE Build Service

	15.2. Where to Place Your Project
	15.2.1. Base Project
	15.2.2. Supporting Additional Versions
	15.2.2.1. Stable and Development Versions
	15.2.2.2. Multiple Stable Versions

	15.3. Creating a Package
	15.4. Getting Binaries
	15.4.1. Examples

	Chapter 16. Bootstrapping
	16.1. The Issue
	16.2. A Cheat Sheet
	16.2.1. Creating Your First Project
	16.2.2. Importing Your Base Linux Project
	16.2.2.1. With a login on a remote OBS
	16.2.2.2. Without a Login on a Remote OBS
	16.2.2.3. Bootstrapping
	16.2.2.3.1. Troubleshooting

	16.3. Creating a First Project

	Chapter 17. osc Example Commands
	17.1. Package Tracking

	Chapter 18. Advanced Project Setups
	18.1. Rebuilding an Entire Project with Changes
	18.2. Integrating Source Handling
	18.3. Using OBS for Automated QA

	Chapter 19. Building Kernel Modules
	Chapter 20. Common Questions and Solutions
	20.1. Working with Limited Bandwidth
	20.1.1. Using the Web Interface
	20.1.2. Using osc with Size Limit
	20.1.3. Using download_url
	20.1.4. Using Source Services in trylocal Mode

	Part VI. Reference
	Chapter 21. OBS Architecture
	21.1. Overview Graph
	21.2. Communication Flow

	Chapter 22. OBS Concepts
	22.1. Project Organization
	22.1.1. Project Metadata
	22.1.2. Project Build Configuration
	22.1.3. Project Build Macro Configuration
	22.1.4. An OBS Package

	22.2. The OBS Interconnect
	22.3. Download on Demand Repositories (DoD)
	22.3.1. Motivation
	22.3.2. XML Document Hierarchy
	22.3.3. The Daemon
	22.3.4. The download Element
	22.3.5. The master Subelement
	22.3.6. The pubkey Subelement
	22.3.7. Repository Types
	22.3.7.1. YAST Sources (susetags)
	22.3.7.2. RPM Sources (rpmmd)
	22.3.7.3. Apt Repository (deb)
	22.3.7.4. Arch Repository (arch)
	22.3.7.5. Mandriva Repository (mdk)

	22.4. Integrating External Source Repositories
	22.4.1. Motivation
	22.4.2. Creating an Reference to an External SCM
	22.4.3. Working with Local Checkouts
	22.4.4. Managing Build Recipes in a SCM

	Chapter 23. Build Process
	23.1. Phases of a Build Process
	23.1.1. Preinstall Phase
	23.1.2. Install Phase
	23.1.3. Package Build
	23.1.4. After the Build

	23.2. Identify a build
	23.2.1. Read DISTURL from an RPM
	23.2.2. Read DISTURL from a container

	Chapter 24. Build Containers
	24.1. Supported Container Formats
	24.2. Container Registry
	24.3. Container Image Signatures

	Chapter 25. Source Management
	25.1. Find Package Sources
	25.2. Generating SLSA Provenance Data
	25.3. Generating SBOM (Software Bill Of Material) Data

	Chapter 26. SCM Bridge
	26.1. SCM Bridge
	26.1.1. Introduction
	26.1.2. Setup a package using the scm bridge
	26.1.3. Setup an entire project using the SCM bridge
	26.1.4. Implementation and Limitations
	26.1.4.1. Using a specific revision, tag or branch
	26.1.4.2. Converting to a project git
	26.1.4.3. Forking a scmsync package

	26.1.5. SCM Source Updates

	Chapter 27. Supported Formats
	27.1. Spec File Specials (RPM)
	27.2. OBS Extensions for (KIWI) Appliance Builds
	27.3. OBS Extensions for Dockerfile based builds

	Chapter 28. Request and Review System
	28.1. What a request looks like
	28.1.1. Action Types
	28.1.1.1. submit
	28.1.1.2. release
	28.1.1.3. delete
	28.1.1.4. add_role
	28.1.1.5. set_bugowner
	28.1.1.6. change_devel
	28.1.1.7. maintenance_incident
	28.1.1.8. maintenance_release
	28.1.1.9. group

	28.1.2. Request states
	28.1.3. Reviewers
	28.1.3.1. Manually added reviews
	28.1.3.2. Automatically added reviews

	28.1.4. Request creation
	28.1.5. Request operations

	28.2. Who can accept a request

	Chapter 29. Image Templates
	29.1. Structure of Image Templates
	29.2. Adding Image Templates to/Removing Image Templates from the Official Image Template Page
	29.3. Receiving Image Templates via Interconnect

	Chapter 30. Multiple Build Description File Handling
	30.1. Overview
	30.2. How Multibuild is Defined

	Chapter 31. Maintenance Support
	31.1. Simple Project Setup
	31.2. Project setup for the Maintenance Process
	31.3. Using the Maintenance Process
	31.3.1. Workflow A: A Maintainer Builds an Entire Update Incident for Submission
	31.3.2. Workflow B: Submitting a Package Without Branching
	31.3.3. Workflow C: Process Gets Initiated By the Maintenance Team
	31.3.4. Maintenance Incident Processing
	31.3.5. Incident Gets Released
	31.3.6. Incident Gets Reopened and Re-Released
	31.3.7. Using Custom Update IDs

	31.4. OBS Internal Mechanisms
	31.4.1. Maintenance Incident Workflow
	31.4.2. Searching for Incidents

	31.5. Setting Up Projects for a Maintenance Cycle
	31.5.1. Defining a Maintenance Space
	31.5.2. Maintained Project Setups

	31.6. Optional Channel Setup
	31.6.1. Defining a Channel
	31.6.2. Using Channels in Maintenance Workflow

	Chapter 32. Binary Package Tracking
	32.1. Which Binaries Are Tracked?
	32.2. What Data Is Tracked?
	32.2.1. Binary Identifier
	32.2.2. Binary Information
	32.2.3. Product information

	32.3. API Search Interface

	Chapter 33. Scheduling and Dispatching
	33.1. Definition of a Build Process
	33.2. Scheduling Strategies
	33.2.1. Build Trigger Setting
	33.2.2. Block Mode
	33.2.3. Follow Project Links

	33.3. Release Number Handling
	33.3.1. Build Counter Syncing via Architectures
	33.3.2. Build Counter Syncing via multiple packages

	Chapter 34. Build Constraints
	34.1. Build Resource Usage and Statistics
	34.1.1. Displaying the build statistics
	34.1.1.1. Downloading the _statistics file using osc
	34.1.1.2. Downloading the _statistics file using the OBS API

	34.2. Constraint Qualifiers
	34.3. Constraint scope and precedence
	34.3.1. Project-scoped constraints
	34.3.2. Package-scoped constraints
	34.3.3. Build recipe-scoped constraints

	34.4. Constraint syntax
	34.4.1. hostlabel
	34.4.2. sandbox
	34.4.3. linux
	34.4.3.1. version
	34.4.3.1.1. min
	34.4.3.1.2. max

	34.4.3.2. flavor

	34.4.4. hardware
	34.4.4.1. cpu
	34.4.4.1.1. flag

	34.4.4.2. processors
	34.4.4.3. jobs
	34.4.4.4. disk
	34.4.4.4.1. size

	34.4.4.5. memory
	34.4.4.5.1. size

	34.4.4.6. physicalmemory
	34.4.4.6.1. size

	34.5. Constraint Handling
	34.5.1. At least one compliant worker is available
	34.5.2. More than half of existing workers satisfy the constraints
	34.5.3. Less than half of existing workers satisfy the constraints
	34.5.4. No existing workers satisfy the constraints

	34.6. Checking Constraints with osc

	Chapter 35. Building Preinstall Images
	Chapter 36. Authorization
	36.1. OBS Authorization Methods
	36.1.1. Default Mode
	36.1.2. Proxy Mode
	36.1.3. LDAP Mode

	36.2. OBS Token Authorization
	36.2.1. Managing User Tokens
	36.2.2. Executing an Action

	Chapter 37. Quality Assurance(QA) Hooks
	37.1. Source Related Checks
	37.2. Build Time Checks
	37.2.1. In-Package Checks
	37.2.2. Post Build Checks
	37.2.3. Post Build Root Checks
	37.2.4. KIWI Specific Post Build Root Checks

	37.3. Workflow Checks
	37.3.1. Automated Test Cases

	Glossary
	Appendix A. GNU Licenses
	A.1. GNU General Public License
	A.1.1. Preamble
	A.1.2. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	A.1.2.1. NO WARRANTY
	A.1.2.2. END OF TERMS AND CONDITIONS

	A.1.3. How to Apply These Terms to Your New Programs

	A.2. GNU Free Documentation License
	A.2.1. PREAMBLE
	A.2.2. APPLICABILITY AND DEFINITIONS
	A.2.3. VERBATIM COPYING
	A.2.4. COPYING IN QUANTITY
	A.2.5. MODIFICATIONS
	A.2.6. COMBINING DOCUMENTS
	A.2.7. COLLECTIONS OF DOCUMENTS
	A.2.8. AGGREGATION WITH INDEPENDENT WORKS
	A.2.9. TRANSLATION
	A.2.10. TERMINATION
	A.2.11. FUTURE REVISIONS OF THIS LICENSE
	A.2.12. ADDENDUM: How to use this License for your documents

